

This work is made available under the terms of the
Creative Commons Attribution-NoDerivs 3.0 Unported License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/.

Copyright © 2009 D.H.J. Takken
(d.h.j.takken@edxml.org)

Copyright © 2020 the edxml foundation
(spec@edxml.org)

published by the edxml foundation

www.edxml.org

http://creativecommons.org/licenses/by-nd/3.0/
www.edxml.org

Acknowledgements

A special thanks goes to

The Dutch National
Police Agency

and Northwave
Nederland B.V.

for providing the challenges that inspired this effort,
for their role as incubators

Pim Takkenberg and Tycho van Marle

for their championing of this effort
from the very beginning

Contents

1 Introduction . 7

1.1 Valid EDXML . 7

1.2 General EDXML structure 7

1.3 Events and Ontologies 8

2 Event Types . 11

2.1 Defining an event type 12

2.2 Adding properties 14

2.3 Adding property relations 19

2.4 Adding a parent definition 25

2.5 Defining attachments 27

2.6 Time . 29

2.7 Order . 30

2.8 Versioning and Upgrading 32

3 Event Sources . 34

3.1 The uri attribute . 34

3.2 The description attribute 35

3.3 The acquisition date attribute 35

3.4 Versioning and Upgrading 35

4 Concepts . 36

4.1 The name attribute 36

4.2 The display name attributes 37

4.3 The description attribute 37

4.4 The version attribute 37

4.5 Versioning and Upgrading 37

5 Object Types . 38

5.1 The name attribute 39

5.2 The description attribute 39

5.3 The display name attributes 40

5.4 The xref attribute 40

5.5 The compress attribute 40

5.6 The regex attributes 40

5.7 The unit attributes 41

5.8 The prefix-radix attribute 41

5.9 The data-type attribute 42

5.10 The fuzzy-matching attribute 49

5.11 Versioning and Upgrading 51

5.12 Data Type Upgrading 52

6 Ontology Versioning and Upgrading 52

7 Foreign Elements and Attributes 54

7.1 Foreign event attributes 54

7.2 Foreign elements 54

8 Event Hashes . 55

8.1 Hash computation method 55

8.2 Example . 56

9 Resolving Event Collisions 57

9.1 Merging event objects 57

9.2 Merging explicit parents 58

9.3 Merging event attachments 58

9.4 Event merge conflicts 58

10 Concepts in EDXML . 59

11 Edxml Templates . 60

11.1 Template syntax . 60

11.2 Template formatters 63

12 Equivalence . 68

12.1 Event Equivalence 68

12.2 Ontology Equivalence 69

13 Tag and Attribute Reference 71

Introduction

1. Introduction

This document is the official specification of the edxml data representation.
Edxml offers a single generic representation for virtually any structured
data, allowing different kinds of data from various sources to be forged
into a single consistent data set. At the same time edxml is also a simple
form of knowledge representation. As such, it enables machines to learn the
meaning of data, learn how to automatically correlate various types of data,
reason about it and assist human analysts in connecting the dots to discover
the big picture.

Edxml originates from operational needs and was shaped into its current
form by applying it to actual real world problems in forensics, law enforce-
ment, intelligence and cyber security. As such, it has a strong focus on sim-
plicity and practical applicability.

Detailed information about the origin, background and ideas that drive the
edxml effort can be found on www.edxml.org.

1.1 Valid EDXML

An edxml document is valid if and only if both of the following two condi-
tions are met:

1. The edxml document validates against the edxml relaxng schema1 1 This schema can be obtained from
https://github.com/edxml/schema/

2. The edxml document adheres to the specifications outlined in this
document.

1.2 General EDXML structure

Edxml documents use the <edxml> tag as root element and are encoded
using the utf-8 character encoding. Unless indicated otherwise, all xml el-
ements in edxml documents must be in the edxml namespace. The edxml
namespace uri is http://edxml.org/edxml.

Edxml represents all data by means of events. While the name ‘event’ sug-
gests that it represents an occurrence taking place at some point in time, its
representational scope is much wider. An edxml event is probably best de-
scribed as follows:

An environment providing coherence and
context for a group of one or more data elements.

In this specification document we will frequently use phone call records
from an imaginary Client Relations Management (crm) system of a

edxml | 7

www.edxml.org
https://github.com/edxml/schema/

Introduction

web shop as examples of events. A phone call event may contain a set
of data elements which includes the phone numbers involved, a time
stamp and a duration. These data elements are called value objects, or ob-
jects for short. Each event groups several objects together and provides
the context for these objects. Due to the context (phone call), the ob-
jects are given meaning, and their mutual relations are defined. Events
may contain other kinds of data elements besides objects, such as attach-
ments.

The general layout of an edxml document is shown in figure 1. Every
edxml document consists of two different interleaving elements: Elements
describing ontology information (green) and elements describing the events
(blue). These two elements may repeat themselves indefinitely to form doc-
uments of arbitrary size.

An ontology element contains all of the information that is required to in-
terpret and validate the events that follow it.

Ontology

Event

Event

Object Types

Event Type

Sources

Properties
Concepts

Event Type
Relations

Property

Attachment

Object

Object

Object

Object

Event

EDXML

Ontology

Attachment

Property

Attachments

Figure 1: General structure of an edxml
document. Note that this is not a complete
representation of all elements of an edxml
document.

1.3 Events and Ontologies

Events are represented by means of <event> elements which have the root
<edxml> element as their parent. Any edxml document that contains at
least one event must also contain at least one <ontology> element. Like
the <event> elements, <ontology> elements must be children of the root
element. The first ontology element must precede the first event element.
There is no limit to the number of <event> and <ontology> elements that
an edxml document can contain. A coarse1 example of this layout is shown 1 For brevity we occasionally show partial

xml structures by replacing sub-elements
or attributes with ellipsis (…) and specify-
ing the content of these parts elsewhere.

below.

1 <edxml version="3.0.0" xmlns="http://edxml.org/edxml">
2 <ontology>
3 ...
4 </ontology>
5 <event event-type=... source-uri=...>
6 ...
7 </event>
8 <ontology>
9 ...
10 </ontology>
11 <event event-type=... source-uri=...>
12 ...
13 </event>
14 ...
15 </edxml>

edxml | 8

Introduction

The version attribute of the root element indicates the version of the
edxml specification that is to be applied when interpreting the document.
The edxml specification uses semantic versioning1. 1 Please refer to https://semver.org/.

1.3.1 Event Elements

Each event must have an event-type and a source-uri attribute. The
event-type attribute contains the name of one of the event types2 defined 2 Event types are specified in section 2

in any of the preceding <ontology> elements. Any event must be valid
according to the requirements imposed by its event type. The source-uri
attribute must contain the uri of one of the event sources3 defined in any of 3 Event sources are specified in section 3

the preceding <ontology> elements.

An example of an event is shown below.

1 <event event-type=... source-uri=...>
2 <properties>
3 <caller>0034656286219</caller>
4 <callee>0034642772906</callee>
5 <duration>5</duration>
6 </properties>
7 </event>

The <properties> element can be populated with zero or more objects.
An object is a child of the properties element having a tag that matches
the name of any of the properties defined by the event type. Note that this
implies that property names must be valid xml tag names. The use of xml
tag names which are reserved by the w3c xml specification is not allowed.
The value of the object is the text content of the object element. Generally,
an event may contain zero or more objects for each of the properties of
the event type. Event types may restrict the number of event objects that a
property can contain4. 4 Refer to section 2.2 for details

Object values must not be empty. An empty object value in edxml is repre-
sented by omitting the object entirely.

Events may have one or more attachments. While properties play a key
role in defining the structure of events, attachments do not. While ob-
ject values are typically short strings, attachments are intended to store
longer strings, like json documents for example. We can extend the
above phone call event to contain a note about the conversation, like
this:

1 <event event-type=... source-uri=...>
2 <properties>
3 <caller>0034656286219</caller>
4 <callee>0034642772906</callee>
5 <duration>5</duration>
6 </properties>
7 <attachments>
8 <note id="note">Client requested 10% discount.</note>
9 <attachments/>
10 </event>

edxml | 9

https://semver.org/

Introduction

The <attachments> element is optional. When present it must be pop-
ulated with one or more attachments. An attachment is a subelement of
the <attachments> element having a tag that matches the name of any
of the attachments defined by the event type. The value of the attach-
ment is the text content of the attachment element. Each attachment ele-
ment must have an id attribute which uniquely identifies an attachment
amongst all attachments in the event that share a common attachment
name. Within a single event there must not be more than one attachment
having a particular combination of attachment name and attachment identi-
fier.

Attachments must not be empty. An empty attachment is represented by
omitting it entirely.

An <event> element may have an optional parents attribute con-
taining a comma separated list of parent events. The attribute is in-
tended to indicate that an event has been created using one or more other
events (the ‘parents’) as input. It aids in tracking an event back to its ori-
gins.

The parent events must be specified by means of their sticky hashes1 as 1 Sticky hashes are specified in section 8.

computed using the sha1 hashing function and represented as lowercase
hexadecimal strings of 40 characters in length.

1.3.2 Ontology Elements

An <ontology> element may contain any number of ontology compo-
nents. The various types of ontology components are:

• Event type
• Object type
• Concept
• Source

Ontology elements must define at least the ontology components that are
referred to by the events between it and either the next ontology element or
the end of the document. Events must not refer to an ontology component
unless that component has been previously defined in the same edxml doc-
ument.

edxml | 10

Event Types

The general structure of an ontology element looks like this:

1 <ontology>
2 <object-types>
3 <object-type>
4 ...
5 </object-type/>
6 </object-types>
7 <concepts>
8 <concept>
9 ...
10 </concept/>
11 </concepts>
12 <event-types>
13 <event-type>
14 ...
15 </event-type>
16 </event-types>
17 <sources>
18 <source>
19 ...
20 </source>
21 </sources>
22 </ontology>

2. Event Types
Event types form the very fabric of edxml documents. They provide the
context that defines the role of each of the objects in an event, their value
spaces, how they are related and what their use is for data analysis. This sec-
tion specifies how to define them.

Contents

2.1 Defining an event type 12

2.2 Adding properties 14

2.3 Adding property relations 19

2.4 Adding a parent definition 25

2.5 Defining attachments 27

2.6 Time . 29

2.7 Order . 30

2.8 Versioning and Upgrading 32

edxml | 11

Event Types

2.1 Defining an event type

An event type is defined by adding an <event-type> element as a child
of an <ontology> element. An abbreviated example of a phone call
event type definition, including a number of event properties, is given
below:

1 <event-type name="acme.crm.phonecall"
2 display -name-singular="phone call"
3 display -name-plural="phone calls"
4 description="sales team phone call record"
5 version="1"
6 summary=... story=... >
7 <property name="caller"
8 description="caller"
9 optional="false"
10 multivalued="false"
11 confidence="10"
12 object-type="telecom.phone.number"/>
13 <property name="callee"
14 description="callee"
15 optional="false"
16 multivalued="false"
17 confidence="10"
18 object-type="telecom.phone.number"/>
19 <property name="duration"
20 description="duration"
21 optional="false"
22 multivalued="false"
23 confidence="10"
24 object-type="datetime.duration.seconds"/>
25 </event-type>

The various attributes of the <event-type> element are specified be-
low.

2.1.1 The name attribute

The name attribute uniquely identifies the event type. It must be com-
posed of one or more components, separated by dots. The dotted struc-
ture is used to place event type names in a virtual namespace hierarchy.
Namespacing is intended to reduce the risk of name collisions when merg-
ing edxml documents produced by various parties. In the above exam-
ple, we used the name acme.crm.phonecall to identify phone calls
stored in a crm system from vendor Acme Corporation. The name is con-
structed from left to right, starting with the name of the vendor of the crm
software. Each subsequent name component makes the name more spe-
cific.

2.1.2 The description attribute

The description attribute must contain a clear and concise description of the
event type.

edxml | 12

Event Types

2.1.3 The display name attributes

The display-name-singular and display-name-plural attributes
contain the singular and plural forms of the display name of the event
type. The display name provides a human friendly version of the event type
name intended for display in user interfaces, visualizations, reports and so
on.

2.1.4 The story and summary attributes

The story and summary attributes are edxml templates1 that can be used 1 Edxml templates are specified in sec-
tion 11.to construct a textual representation of the information in an event, in

human readable form. The story template is intended to generate a full de-
scription of the event. The summary attribute is intended to generate a short
description that can be used in contexts where space is limited. It should
not refer to more than one or two properties.

2.1.5 The event-version attribute

The event-version attribute is used for versioning of events. When
set, the event type becomes a versioned event type. The attribute has two
uses:

• Detect event merge conflicts2 2 Event merge conflicts are defined in
section 2.2.8• Merging of properties that use the replace merge strategy3 3 Event merge strategies are defined in
section 2.2.8

The event-version attribute is optional except when the event type de-
fines any properties that use the replace merge strategy. The event-
version attribute must contain the name of a mandatory single-valued
property of the event type. This property must have data type sequence4 4 Data types are defined in section 5.9

and must have the max merge strategy.

2.1.6 The sequence attribute

The sequence attribute is used to determine the ordering of events. The at-
tribute is fully specified in section 2.7.1

2.1.7 The timespan attributes

The timespan-start and timespan-end attributes are used to determine
how dates and times in the events must be interpreted. Both attributes are
fully specified in section 2.6.

edxml | 13

Event Types

2.2 Adding properties

Let us return to our initial example of an event type definition, which de-
fines some properties:

1 <event-type name="acme.crm.phonecall"
2 display -name-singular="phone call"
3 display -name-plural="phone calls"
4 description="sales team phone call record"
5 version="1"
6 summary=... story=... >
7 <property name="caller"
8 description="caller"
9 optional="false"
10 multivalued="false"
11 confidence="10"
12 object-type="telecom.phone.number"/>
13 <property name="callee"
14 description="callee"
15 optional="false"
16 multivalued="false"
17 confidence="10"
18 object-type="telecom.phone.number"/>
19 <property name="duration"
20 description="duration"
21 optional="false"
22 multivalued="false"
23 confidence="10"
24 object-type="datetime.duration.seconds"/>
25 </event-type>

The various attributes of the <property> element are specified be-
low.

2.2.1 The name attribute

The property name uniquely identifies the property within the scope of its
event type. As such, the event type acts as a name space for properties. Dif-
ferent event types may define properties with identical names.

Property names may contain dots (.). The use of dots in property names
is intended to create an implicit hierarchical structure in the properties of
an event type. As an example, consider the following set of event property
names:

customer.name
customer.address.city
customer.address.street

This structure can be useful when translating edxml events into a json
representation for example. The dotted structure may be used to create json
objects that look like this:

edxml | 14

Event Types

{
'customer ': {

'name': 'Alice',
'address ': {

'city': 'London',
'street ': 'Oxford Street'

}
}

}

2.2.2 The description attribute

The description attribute must contain a concise description of the property
which clarifies the role of the property within the context of the event type.
When the property name is sufficiently descriptive of its own, the descrip-
tion may be identical to the property name.

2.2.3 The object-type attribute

The object-type attribute must contain the name of any of the object
types defined in the same ontology element or a preceding one in the same
edxml document. The object type determines the value space of the objects
of the property. Events must not contain objects for this property other than
those within the value space of the object type. Object types are specified in
section 5.

2.2.4 The optional attribute

When the optional attribute is set to true, the property may be omitted
in events. We will refer to these properties as optional properties. An at-
tribute value of false makes the property mandatory, which means that
events must have at least one object for the property. 1 1 We recommend making event properties

mandatory when possible, as it provides
a safe assumption that data analysis algo-
rithms can make about the data.

2.2.5 Themultivalued attribute

When the multivalued attribute is set to true, the property may have
multiple objects in a single event. We will refer to these properties as
multi-valued properties. An attribute value of false makes the prop-
erty single-valued: It must not have more than one object for any single
event.2 2 We recommend making event properties

single-valued when possible, as it provides
a safe assumption that data analysis algo-
rithms can make about the data.

2.2.6 The confidence attribute

The confidence attribute is an integer number in the interval [1, 10]
which indicates the probability that object values of the property are correct.

edxml | 15

Event Types

Attribute values smaller than 10 can be used for properties of which the ob-
ject values may be inaccurate. For example, an event type representing cus-
tomer data that originates from manual input that has not been verified may
be given a lower confidence value.

2.2.7 The similar attribute

The optional similar attribute provides hints to aid in finding events that
are similar to another event of the same type. In the case of our phone call
example, one might want to search the dataset for similar phone calls that
originated from the same caller. To hint at this possibility the similar
attribute may contain a short phrase that describes how one event relates to
similar events that share the same property value.1 The description should 1 While an analyst could find similar events

by matching the value of any property
the intent of this attribute is to provide
shortcuts to typical searches. These could
be used to generate context menu items in a
gui for example.

fit into a grammar construct like this:

Find all <plural event type display name> <similar attribute> the same
<property description>

For instance, when a similar attribute value of “originating from” is used
for property caller of event type acme.crm.phonecall, this might be
used to generate the following query description:

Find all phone calls originating from the same caller

2.2.8 Themerge attribute

An edxml document may contain multiple physical events that repre-
sent instances of one and the same logical event. Edxml documents may
be processed to merge these instances into one. The merge attributes of
the event properties determine the merge strategy that must be used to
merge the objects of each of the properties of the events. Event merge
operations and the role of the merge attribute are fully specified in sec-
tion 9.

The merge attribute is optional. When it is specified it must have one of the
following values:

• min
• max
• add
• replace
• match
• set
• any

edxml | 16

Event Types

When the attribute is omitted its default value must be assumed to be
‘any’.

Properties that use the min or max strategy must be mandatory and single-
valued.

Properties that use the replace strategy must be optional and single-
valued.

Properties that use the min or max strategy must have an object type that
has a data type that is a member of the number, sequence or datetime
family1. 1 Please refer to section 5.9 for details about

data type families.

Properties that use the match strategy must not be associated with an ob-
ject type which has data type number:float or number:double. This
restriction originates from the fact that floating point values cannot al-
ways be converted between their decimal string representation and binary
representation in a lossless way. Event hashes2 must be guaranteed not 2 Event hashes are specified in section 8.

to change when events are serialized to or deserialized from xml. Us-
ing floating point values in hashes would make it difficult to guarantee
this.

2.2.9 The version attribute

The version attribute determines the version of the event type definition.
Versioning of ontology components is covered in section 6.

2.2.10 Concept associations

Properties may be associated with one or multiple concepts. These associa-
tions indicate that the property contains objects which are identifiers of the
concept that it is associated with.3 An example of a concept association is 3 Please refer to section 10 to learn more

about edxml concepts and which role event
properties play to define and construct
concept instances.

shown below.

1 <property name="caller"
2 description="caller"
3 optional="false"
4 multivalued="false"
5 confidence="10"
6 object-type="telecom.phone.number">
7 <property -concept name="person"
8 confidence="8"
9 cnp="128"/>
10 </property>

In the above example a property named caller is associated with a con-
cept named person. The concept in an association must be defined in
the same <ontology> element or a preceding one in the same edxml
document. A property must not have multiple associations with the same
concept.

The mandatory confidence attribute is used to express the concept identi-

edxml | 17

Event Types

fication authority of a property. Concept identification authority expresses
how authoritative a property is for identifying a concept instance1. More 1 Refer to section 10 for information about

concepts and concept instancesprecise:

The estimated probability2 that the correct concept instance is selected from all 2 On an integer scale in the interval [0,10]

possible concept instances in the dataset, when the only selection criterion is the
object type and value of the property for which the authority is being defined.

For example, consider a property that is an identifier for a concept repre-
senting a person. When that property contains passport numbers then it is
a fairly strong identifier for that concept. Hence, it should be given a high
concept confidence. On the other hand, in case that property contained
family names then it should be given a low confidence for that same con-
cept, because there could be many different persons in a dataset sharing the
same family name.3 3 Given that there are only 11 possible

confidence values, determining the best
suitable value should not be taken to be an
exact science. A rough estimate will do.

The cnp attribute is an integer in the interval [0,255] which contains
the Concept Naming Priority (cnp) of the event property. The cnp is in-
tended to be used by concept mining4 applications that need to choose 4 Refer to section 10 for information about

concept mining.between different property objects to use as a name for a concept in-
stance. Consider two properties that are both identifiers for the same
concept. One property represents the name of a person and sets a high
cnp. The other event property represents a passport number and sets
a low cnp. Then, the name will be preferred over the passport num-
ber to name concept instances. This is especially useful to allow user
interfaces to automatically pick the most suitable value to name con-
cepts.

Each concept association implicitly defines a concept attribute. The role of
concept attributes is similar to the role of properties in event types. Con-
cept attributes are named after the object type of the associated property.
The name of the attribute is defined to be the name of the object type fol-
lowed by a colon (:) and an extension. By default, this extension is an
empty string. The extension can be overridden by setting the xml attribute
attr-extension of the <property-concept> tag to the desired exten-
sion.

Customizing the attribute name extension should only be done in cases
where the object type is too generic to convey the meaning of the object
values within the context of the concept. As an example consider an event
type containing first names and family names of employees. Both of these
are values of an object type named person.name and are associated with
a concept named person. This implies that instances of the person con-
cept will have a single concept attribute named person.name: which will
contain both first names and family names. This is the result of the context
transfer that is taking place. When constructing concept instances, object
values are ‘transferred’ from event properties to concept attributes. While
the names originate from an event type that stores first names and family
names in separate properties, they share the same object type. As a result,

edxml | 18

Event Types

first names and family names will populate the same concept attribute by
default. By setting the attr-extension attributes of the associations in
this example to first and family the person.name: attribute is split into
two distinct concept attributes, person.name:first and person.name:
family.

By default concept attributes inherit their display names from the object
types of the associated property. When an attribute name extension is
specified, the display names of the attribute can be overridden as well by
setting custom display names in the attr-display-name-singular and
attr-display-name-plural attributes of the <property-concept>
tag.

2.3 Adding property relations

Property relations can be added to an event type by adding a <relations>
element. This element can have any number of child elements, each of
which defines a property relation. Various types of property relations can
be specified. The tag name of the property relation element indicates the
relation type. Let us return to our initial example of an event type definition
once again and add a property relation:

1 <event-type name="acme.crm.phonecall"
2 display -name-singular="phone call"
3 display -name-plural="phone calls"
4 description="sales team phone call record"
5 version="1"
6 summary=... story=... >
7 <property name="caller"
8 ...
9 object-type="telecom.phone.number">
10 <property -concept cnp="128"
11 confidence="8"
12 name="person"/>
13 </property>
14 <property name="callee"
15 ...
16 object-type="telecom.phone.number">
17 <property -concept cnp="128"
18 confidence="8"
19 name="person"/>
20 </property>
21 <property name="duration"
22 ...
23 object-type="datetime.duration.seconds"/>
24 <relations>
25 <inter source="caller"
26 target="callee"
27 source-concept="person"
28 target-concept="person"
29 description=...
30 predicate="contacted"
31 confidence="9"/>
32 </relations>
33 </event-type>

This example contains one property relation definition, between the “caller”
property and the “callee” property. The relation is of type inter. The vari-

edxml | 19

Event Types

ous types of relations are detailed in section 2.3.7. The property relation at-
tributes are specified below.

2.3.1 The source and target attributes

The source and target attributes must contain the names of the prop-
erties of the event type that are involved in the relation. Which prop-
erty should be chosen as the source and which as the target may or may
not be arbitrary depending on the type of relation, as indicated in sec-
tion 2.3.6.

2.3.2 The concept attributes

Relations of relation types inter and intra do not only relate two prop-
erties, they also relate the concepts associated with those properties. Re-
lations of these types must specify both the source-concept and the
target-concept attribute to indicate which concepts are involved in the
relation. The source-concept attribute must be the name of one of the
concepts associated with the source property. The target-concept at-
tribute must be the name of one of the concepts associated with the target
property.

2.3.3 The description attribute

The description attribute contains an edxml template. The general
format of edxml templates is specified in section 11. In addition to these
general specifications, the description attribute must refer to both related
properties. It must not refer to any of the other properties or attachments of
the event type.

All types of relations must set the description attribute unless specified oth-
erwise in the sections that cover the relation types in more detail. The tem-
plate describes the reason why the two properties are related, fitting into a
grammar construct like this:

The properties are related because <relation description>

For example, the description attribute of the defined relation between the
caller and callee in our phone call example might read:

a phone call was registered between [[caller]] and [[callee]]

edxml | 20

Event Types

2.3.4 The predicate attribute

The predicate attribute provides a concise alternative to the value of the
description attribute. All types of relations must set this attribute unless
specified otherwise in the sections that cover the relation types in more
detail. As in English grammar the predicate is intended to be placed in be-
tween a subject and an object where, in this case, the subject is a value of the
source property and the object is a value of the target property. For exam-
ple, the following predicates

• is married to
• communicates with
• is called

could be processed into the following relation descriptions:

• Alice is married to Bob
• Alice communicates with Bob
• Alice is calledMiss Piggy

2.3.5 The confidence attribute

The confidence attribute is defined as follows:

The probability1 that the relation actually exists when it is observed once 1 scaled to an integer number in the interval
[0, 10]

Here, an observation of a relation is defined as an event having an ob-
ject for both related properties. When any of the two properties has no
object in a particular event then the relation does not exist within the
context of that event. Also, when an event has multiple object values
for any of the related properties, then all possible combinations of ob-
ject values of the two properties are observations of the relation. For
example, when an event has n objects for property source andm ob-
jects for property target, then a total of n ·m observed relations re-
sult.

All types of relations must set this attribute unless specified otherwise in the
sections that cover the relation types in more detail.

edxml | 21

Event Types

2.3.6 Relation Types

The edxml specification defines the following relation types:

inter This type of relation interconnects one
concept instance1 to another. For 1 Themeaning of concepts and concept

instances is detailed in section 10example, it may relate a particular
customer to a particular product.

intra This type of relation relates information
about the same concept instance. It may,
for instance, relate the name of a person
to the home address of that same
person.

name Identifies one property as providing
names for the objects of another
property.

description Identifies one property as providing
descriptions for the objects of another
property.

container Identifies the object of one property as
being part of the object of another
property.

original Identifies the object of one property as
being the original of the object of
another property.

other Generic type used for relations for
which none of the other relation types
are suitable.

An event type must not define more than one relation for each possi-
ble combination of relation type, source, target, source-concept and
target-concept.

Note that a relation does not relate a pair of properties or concepts in gen-
eral. Depending on the presence or absence of objects in a given event a re-
lation may or may not exist in that specific event.

The various types of relations are specified in detail in the following sec-
tions.

2.3.7 intra

An intra-concept relation is intended to convey that the objects of both
related properties are attributes of a single concept instance. Machines can

edxml | 22

Event Types

use these relations to discover new information about a given concept in-
stance. Which property is the source and which is the target is an arbitrary
choice.

The two concepts in an intra-concept relation are commonly chosen to be
identical. The concepts may also be chosen to be different. There are two
possible interpretations of intra-concept relations between two different
concepts:

specialization One concept in the relation may be a specialization1 of 1 In linguistics this is commonly called a
hyponym.the other. A specialized concept is defined as an

extension of the concept name created by appending to
it. For example, when source-concept has value
person while target-concept has value
person.customer then target-concept is a
specialization of source-concept. The interpretation
of this intra-concept relation is discovery of the fact that
a given person instance is actually a
person.customer.

combination When the two related concepts differ and one is not a
specialization of the other then the intra-concept
relation is to be interpreted as discovery that a given
concept instance is also an instance of the related
concept. The resulting concept instance is a
combination of both concepts.

2.3.8 inter

An inter-concept relation is intended to convey that the objects of both re-
lated properties are attributes of two distinct concept instances. Both related
concepts (source-concept and target-concept) may be either identi-
cal or they may differ. Which property is the source and which is the target
is an arbitrary choice.

2.3.9 name

Name relations relate two properties where the source property provides
names for the values of the target property. For example, an event type
could define two properties containing a product number and a prod-
uct name. A name relation can be used to explicitly specify this relation-
ship.

Name relations are intended to generate universals, which means that if the
relation between two objects exists within the context of one event then it
exists in any context2. More precisely, when a given event contains a name 2 Due to this it is not recommended to

define name relations involving object types
that are highly generic in nature.

relation which states that objectOs of object type Ts is a name for object

edxml | 23

Event Types

Ot of object type Tt thenOs of object type Ts may always be used as an
appropriate name for objectOt of object type Tt, no matter which event the
object appears in.

The source property of a name relation must be single-valued. Name re-
lations must not set a description attribute, confidence attribute or
predicate attribute.

2.3.10 description

Description relations relate two properties where the source property pro-
vides descriptions for the objects of the target property. For example, an
event type could define two properties containing a product number and a
product description. A description relation can be used to explicitly specify
this relationship.

The only difference between name relations and description relations is that
computers may assume that objects of the source property of a description
relation are long compared to a name relation. Applications presenting ob-
jects to users may prefer to use a name in stead of a description when avail-
able presentation space is limited.

Description relations are intended to generate universals, which means that
if the relation between two objects exists within the context of one event
then it exists in any context1. More precisely, when a given event contains 1 Due to this it is not recommended to

define description relations involving object
types that are highly generic in nature.

a description relation which states that objectOs of object type Ts is a
description for objectOt of object type Tt thenOs of object type Ts may
always be used as an appropriate description for objectOt of object type Tt,
no matter which event the object appears in.

The source property of a description relation must be single-valued. De-
scription relations must not set a description attribute, confidence at-
tribute or predicate attribute.

2.3.11 container

In a container relation the objects of the source property conceptually con-
tain the objects of the target property. For example, an event type might
define two properties containing product categories and product names. A
container relation can be used to explicitly specify that the category con-
tains the product.

Container relations are intended to generate universals, which means that if
the relation between two objects exists within the context of one event then
it exists in any context2. More precisely, when a given event contains a con- 2 Due to this fact it is not recommended to

define container relations involving object
types that are highly generic in nature.

tainer relation which states that objectOs of object type Ts is a container
for objectOt of object type Tt thenOs of object type Ts may always be re-
garded as containing objectOt of object type Tt, no matter which event the
object appears in.

edxml | 24

Event Types

The source property of a container relation must be single-valued. Con-
tainer relations must not set a description attribute, confidence at-
tribute or predicate attribute.

2.3.12 original

In an original relation the object of the source property contains the orig-
inal value of the object of the target property. The intended use case is
the situation where the original values from a data source need to be nor-
malized in order to be represented using a particular edxml object type.
For example, a mixed case string value that is not case sensitive may be
represented using a lowercase string to facilitate correlating the values. An-
other example is converting the time zone of a date / time value in order
to obtain a valid edxml datetime object, which is always represented as
utc. In cases like these keeping both the normalized value and the orig-
inal value may be desirable. An original relation can be used to explicitly
specify that some property contains the original value of another prop-
erty.

Both the source property and the target property of an original relation
must be single-valued. Original relations must not set a description at-
tribute, confidence attribute or predicate attribute.

2.3.13 other

A relation of type other is a general purpose relation type that can be
used to define relations for which no other suitable relation type ex-
ists. Which property is the source and which is the target is an arbitrary
choice.

2.4 Adding a parent definition

An event type can optionally identify another event type as its parent. This
means that the events of the child have a many-to-one relationship with an
event of the parent event type. Adding a <parent> element to the event
type definition allows for specifying this relationship. This element must
be the first child element of a <event-type> element. Any event type
can have at most one parent event type. Consider the following exam-
ple:

<event-type name="acme.crm.phonecall" ... >
<parent event-type="acme.crm.client"

property -map="client-id:cid"
parent-description="associated with"
siblings -description="related to"/>

...
</event-type>

edxml | 25

Event Types

In the above example, we express the fact that every phone call event is
related to an event describing the details of the client that was involved in
the call. We do that by defining a parent for the acme.crm.phonecall
event type, in this example an event of type acme.crm.client. Next,
we link the two event types by means of properties containing the client
identifier, as is expressed in the property-map attribute. In our exam-
ple both event types have a property containing the client identifier. So,
given any phone call event, we can now find its associated client record
by finding the event of type ‘acme.crm.client’ of which the value of
the cid property matches the value of the client-id property in the
phone call event. Likewise, we can find the siblings of any given phone
call event by finding all phone call events that have the same parent
event.

The various attributes of the <parent> element are specified below.

2.4.1 The event-type attribute

The event-type attribute specifies the name of the parent event type. The
parent event type must be defined in the same ontology element or a pre-
ceding one in the same edxml document.

2.4.2 The property-map attribute

The property-map attribute maps child properties to matching proper-
ties in the parent. The property-map attribute must not be empty and
it must provide a mapping to each of the hashed properties1 of the par- 1 Hashed properties are defined in sec-

tion 9.1ent.2
2 This implies that every child event has
exactly one parent.A property mapping is specified as a string containing the name of a

child property followed by a colon and the name of a property of the par-
ent. Multiple property mappings are specified by concatenating prop-
erty mappings with a comma between the mappings. An example of
a property mapping string that maps multiple properties is given be-
low:

prop1:prop1 ,prop2:prop2

Note that finding the parent of an event requires matching all objects of the
properties contained in the property map as well as the object count. For ex-
ample, the child event might not have any objects for a property contained
in the property map. In that case, the parent event must also have no objects
for the corresponding property.

Each child property in the property-map must have a merge strategy
of either match or any. These restrictions assure that events have one
fixed parent event which cannot be changed by merging it with another
event.

edxml | 26

Event Types

2.4.3 The parent-description attribute

The parent-description attribute contains a string describing the par-
ent in relation to the child. The string must fit in a grammar construct like
this:

... the <parent event type display name> <parent-description> this <child
event type display name>

For example, when the parent event type has display name “client record”,
the child event type has display name “phone call” and parent-description
is “associated with” then these strings may be combined to yield the follow-
ing text phrase:

the client record associated with this phone call

2.4.4 The siblings-description attribute

The siblings-description attribute contains a string describing the
siblings in relation to the parent. The string must fit in a grammar construct
like this:

... all <child event type display name> <siblings-description> the same
<parent event type display name>

For example, when the parent event type has display name “client record”,
the child event type has plural display name “phone calls” and siblings-
description is “related to” then these strings may be combined to yield
the following text phrase:

all phone calls related to the same client record

2.5 Defining attachments

Event types may contain an <attachments> element to define attachments
that can be contained in its events. This element contains zero or more
<attachment> elements to define each of the attachments.

An example of an attachment definition is shown below:

<attachment name="avatar"
display -name-singular="user avatar"
display -name-plural="user avatars"
description="avatar of user [[user]]"
media-type="image/png"
encoding="base64"/>

edxml | 27

Event Types

As an example, the <attachments> element of an edxml event having
an event type containing the above attachment definition may look like
this:

<attachments>
<avatar id="default">YW55IGNhcm5hbCBwbGVhcw==</avatar>

</attachments>

The attributes of the <attachment> element are specified below.

2.5.1 The name attribute

The name attribute uniquely identifies the attachment within the event
type.

2.5.2 The display name attributes

The display-name-singular and display-name-plural attributes
contain the singular and plural forms of the display name of the attachment.
The display name provides a human friendly version of the attachment
name intended for display in user interfaces, visualizations, reports and so
on.

2.5.3 The description attribute

The description attribute must be a valid edxml template1 that may 1 edxml templates are specified in sec-
tion 11contain references to the properties of the event type, allowing the at-

tachment to be associated with zero or more event properties. The in-
tent of the description is to describe how the attachment relates to the
event.

2.5.4 Themedia-type attribute

The media-type attribute must be a valid rfc 6838 media type which indi-
cates how the attachment content should be interpreted.

edxml | 28

Event Types

2.5.5 The encoding attribute

The encoding attribute defines how the attachment content in the events is
encoded. Its value must be one of the following:

base64 The attachment is base64 encoded. This
encoding must be used when the
attachments may contain characters that
cannot be encoded as utf-8 or
characters that are not legal in xml
documents.

unicode The attachment is utf-8 encoded. This
encoding should be used when base64
encoding is not required.

Base64 encoded attachments must be valid base64Binary values as
defined in the w3c xml Schema language recommendation. The use of
whitespace in base64 encoded attachments is allowed.

2.6 Time

Event types may or may not define properties that represent time. Any
property that refers to data type datetime1 represents time. We will refer 1 See section 5 for details about object types

and data types.to the set of objects of these properties in a given event as the time stamps of
that event. Depending on how an event type uses properties that represent
time it can be either timeless or timeful. A timeless event type contains no
properties that represent time and is typically used to represent facts that are
time independent. A timeful event type contains at least one time represent-
ing property.

Any timeful event has a time span. The time span of a timeless event is unde-
fined. Time spans are not explicitly specified for individual events. Rather,
they are an interpretation of the time stamps of an event. The event time
stamps translate into a time span by taking the smallest and largest of the
time stamps.2 In case an event contains just one time stamp, the start and 2 This is the case when the start or end of

the time span is not explicitly defined by
the event type, as specified below.

end time stamps of its time span are both identical to the one time stamp in
the event and the extent of the time span is zero. When an event of a timeful
event type contains no time stamps, the time span of that event is the open
interval (−∞,+∞). Its extent is infinite.

It is not always desirable to consider all time stamps contained in any
event property to compute the time span. For example, consider an event
type representing a ticket in an issue tracking system. During its life cy-
cle, an issue might go through a number of different states and the time
of each state change is recorded. This state tracking might be modelled
by means of several time representing properties like time-created,
time-confirmed and time-resolved. In this example, we may want
the time span of tickets to represent the time between creation and reso-

edxml | 29

Event Types

lution. As long as the ticket is not resolved, no value is set for its time-
resolved property. In this state, we would like its time span to have
a beginning and no end. In other words, it has a half-open time inter-
val.

Timeful event types that support closed, half-open and open time spans can
be defined by means of two optional event type attributes timespan-start
and timespan-end. Setting one or both of these attributes changes how
the event time span is computed. When the timespan-start attribute
is set to the name of one of the time representing properties of the event
type, only the objects of that one property define the start of the time
span. Now, the start of the time span is the lowest value of the objects
of the specified property. In case that property has no values for a par-
ticular event, then the start of the time span is unknown, resulting in a
(half-)open time interval. When the timespan-end attribute is set to the
name of one of the time representing properties of the event type, only
the objects of that property define the end of the time span. Now, the end
of the time span is the highest value of the objects of the specified prop-
erty. In case the property has no values for a particular event, the end of
the time span is unknown, resulting in a (half-)open time interval. When
both the timespan-start and timespan-end attributes are set and nei-
ther of these two properties has any objects for a particular event, the time
span of that event is the open interval (−∞,+∞) and its extent is infi-
nite.

2.7 Order

The ordering of events as they appear in edxml documents is insignificant.
Edxml processing systems are not required to preserve the ordering of
the events they receive as input. Still, knowledge about the ordering of the
events may be crucial for some applications. For that reason we define the
order of edxml events in terms of the information contained in the events
themselves.

When discussing event order we need to consider ordering of both log-
ical and physical events. As detailed in section 2.2.8 multiple events in a
given EDXML document may share the same sticky hash. This means
that these physical events are instances of a single logical event. The or-
dering of logical events is relevant for cause-effect analysis. The ordering
of physical events is relevant when merging multiple physical events in a
single logical event, because merge operations1 can be sensitive to order- 1 Please refer to section 2.2.8 for informa-

tion about event merge operations.ing.

edxml | 30

Event Types

2.7.1 Logical event order

Determining the order for a set of logical events must be done by executing
the following two sorting steps:

1. Sort on the start of the time spans of the events as defined in 2.61 1 Events having no time span start go first
when ordered ascending.

2. Sort any sets of events that have identical time span starting points on
their sequence numbers

The sequence numbers mentioned in step two are defined as follows.
The <event-type> tag of an event type definition accepts an optional
sequence attribute. This attribute must contain the name of a manda-
tory single-valued property of the event type. The object of this property
is defined to be the sequence number of the event and must have the
sequence data type2. Data sources can use the sequence attribute to 2 The sequence data type is defined in

section 5.9.9provide more accurate ordering of its output events when time alone does
not suffice.

Step two of the logical event ordering procedure is not performed when the
event type does not define a sequence number.

When two events have identical time span starting points and no sequence
number is defined then the order of these events is undefined. When two
events have identical time span starting points as well as identical sequence
numbers then the order of these events is undefined.

2.7.2 Physical event order

The ordering of physical events is determined by means of the event-
version attribute of the <event-type> tag of an event type definition.
When merging physical events the values of this property must be used to
sort the events. The last physical event in a set of events that represent the
same logical event is defined as the event having the highest valued object of
the event-version property.

Note that, while the ordering of events as they appear in edxml documents
is insignificant, there are two requirements for positioning events with re-
spect to the definitions of their event types:

• Any event must have an <ontology> element preceding it which defines
its event type, within the same edxml document.

• Any event must be valid according to the newest3 of all definitions of its 3 The newest definition is the one having
the highest version in its version attribute.event type which precede the event in the document.

edxml | 31

Event Types

2.8 Versioning and Upgrading

The same1 event type may be defined multiple times, either within the same 1 Here, the samemeans having identical
values of their name attributes<ontology> element or in multiple <ontology> elements within the same

edxml document or across multiple documents. Each pair of these defini-
tions within a single document must be either each others equivalents2 or 2 Equivalence is defined in section 12.2.4

one must be a valid upgrade of the other. What constitutes a valid upgrade
is defined in section 6.

In table 1 all attributes of the event-type tag are shown and if they can be
upgraded or not.3 3 Please refer to section 6 for details about

ontology upgrading.

attribute upgradable

name n
description y

display-name-singular y
display-name-plural y

timespan-start n
timespan-end n

sequence n
event-version n

story y
summary y

Table 1: Upgrading of event type attributes.

Upgrades must not remove event properties. Adding a property to an event
type is permitted, provided that

• the new property is optional and
• adding the new property does not make a previously timeless event type
into a timeful one.

The attributes of an existing property are partially upgradable as indicated in
table 2.

attribute upgradable

name n
description y

object-type n

merge n

similar y
confidence y

optional y∗

multivalued y∗

Table 2: Upgrading of event property
attributes.

Some attributes are upgradable only when certain conditions are met. In ta-

edxml | 32

Event Types

ble 2 these are marked with a superscript asterisk (y∗). For each of these at-
tributes the conditions are detailed below.

optional Amandatory event property can be
upgraded to be optional but optional
event properties cannot be upgraded to
become mandatory.

multivalued A single valued event property can be
upgraded to be multi-valued but
multi-valued event properties cannot be
upgraded to become single-valued.

Upgrades must not remove property relations. Adding a property relation
to an event type is permitted. The attributes of an existing property relation
are partially upgradable as indicated in table table 3.

attribute upgradable

source n
target n

source-concept n
target-concept n

description y
predicate y
confidence y

Table 3: Upgrading of event property
relation attributes.

Upgrades must not remove property / concept associations. Adding an as-
sociation is permitted. The attributes of an existing property / concept asso-
ciation are partially upgradable as indicated in table 4.

attribute upgradable

name n
attr-extension n

attr-display-name-singular y
attr-display-name-plural y

confidence y
cnp y

Table 4: Upgrading of property / concept
association attributes.

Upgrades must not remove event type parent definitions. Adding a parent
definition to an event type is permitted. The attributes of an existing parent
definition are partially upgradable as indicated in table 5.

Upgrades must not remove event type attachment definitions. Adding an
attachment definition to an event type is permitted. The attributes of an
existing attachment definition are partially upgradable as indicated in ta-
ble 6.

edxml | 33

Event Sources

attribute upgradable

event-type n
property-map n

parent-description y
siblings-description y

Table 5: Upgrading of event parent at-
tributes.

attribute upgradable

description y

display-name-singular y
display-name-plural y

media-type n
encoding n

Table 6: Upgrading of event attachment
attributes.

3. Event Sources
Any event refers to an event source by means of the event source uri in its
source-uri attribute. Event sources are specified by adding <source> ele-
ments as children of the <sources> element of an ontology. A source defi-
nition looks like this:

<source uri="/some/source/uri/"
description="client records from database X"
date-acquired="20100128"
version="1"/>

The same1 source may be defined multiple times, either within the same 1 Here, the samemeans having identical
values of their uri attributes<ontology> element or in multiple <ontology> elements within the same

edxml document or across multiple documents. Each pair of these defini-
tions within a single document must be either each others equivalents2 or 2 Equivalence is defined in section 12.2.3

one must be a valid upgrade3 of the other. 3 What constitutes a valid upgrade is
defined in section 6

The various attributes of the source element are specified below.

3.1 The uri attribute

The uri attribute uniquely identifies an edxml event source. An event
source indicates the origin of the events. An example of a source uri is
given below:

/company/offices/germany/stuttgart/clientrecords/2009/

The collection of source uris in an edxml document may be conceived as a
virtual tree, similar to a directory structure. Each uri uniquely identifies an
edxml data source within the tree. The uri must start and end with a slash.
Note that the virtual directory structure is global, care should be taken to

edxml | 34

Event Sources

choose a suitable prefix uri and use it to create a source uri namespace for
the owner or producer of the data.

3.2 The description attribute

The description attribute can be used to provide more details about the
event source.

3.3 The acquisition date attribute

The optional date-acquired attribute can be used to indicate how recent
the information is. It is a six digit string in the format ‘yyyymmdd’, like
‘20100128’.

3.3.1 The version attribute

The version attribute determines the version of the event source def-
inition. Details on versioning of ontology components are specified in
section 6.

3.4 Versioning and Upgrading

The attributes of the source tag and their upgrading details are specified
in table 7. Please refer to section 6 for details about ontology upgrad-
ing.

attribute upgradable

uri n
description y
date-acquired y

Table 7: Upgrading of event source at-
tributes.

edxml | 35

Concepts

4. Concepts
Edxml concepts are a mechanism to relate properties from multiple
event types that jointly describe the same thing. A concept might be a
person, a location, a product or anything else that is relevant for a par-
ticular data set.1 Concepts are defined by adding a <concept> child el- 1 Concepts are covered in more detail in

section 10.ement to the <concepts> element of the ontology. Revisiting the crm
record example, we might want to define a client concept, which looks like
this:

<concept name="person.client"
display -name-singular="client"
display -name-plural="clients"
description="a customer of a particular vendor"
version="1"/>

The same2 concept may be defined multiple times, either within the same 2 Here, the samemeans having identical
values of their name attributes<ontology> element or in multiple <ontology> elements within the same

edxml document or across multiple documents. Each pair of these defini-
tions within a single document must be either each others equivalents3 or 3 Equivalence is defined in section 12.2.2

one must be a valid upgrade4 of the other. 4 What constitutes a valid upgrade is
defined in section 6.

The various attributes of the concept element are described below.

4.1 The name attribute

The name attribute uniquely identifies the concept. It is composed of one or
more components, separated by dots. The dotted structure is used to place
concept names in a virtual hierarchy. Each of the components must be the
hyponym of the component to the left (if any) and the hypernym of the
component to the right (if any). In the above example, the name person.
client consists of the person component and the client component
where client is a hyponym of person while person is a hypernym of
client. The concept person.client is called a specialization of the
person concept while the person concept is called a generalization of the
person.client concept.

Due to this hierarchical structure, edxml documents which define concepts
a and a.b.c should also define concept a.b, even when a.b is not refer-
enced by any event type.

Concepts enable multiple data sources to contribute information about the
same thing. However, this can only work when these data sources all refer
to the same concept. For this reason concept definitions are often shared
between data sources. Defining shared definitions is a joint effort of edxml
data source developers. Concepts that are not specific to a single data source
should be publicly shared. The edxml foundation maintains a public repos-
itory5 for this purpose. 5 See the Github project page at

https://github.com/edxml/bricks

The edxml relaxng schema allows concept names of up to 255 characters in
length. This enables the use of deep concept hierarchies such as provided by

edxml | 36

https://github.com/edxml/bricks

Concepts

the Princeton WordNet lexicon.

Concept names carry implicit definitions of universals. In the field of knowl-
edge representation universals are universal truths. In our example the
person.client concept implies the following universals:

• a client is a kind of person
• a person may be a client

4.2 The display name attributes

The display-name-singular and display-name-plural attributes
contain the singular and plural forms of the display name of the con-
cept. The display name provides a human friendly version of the concept
name intended for display in user interfaces, visualizations, reports and so
on.

4.3 The description attribute

The description attribute should contain a clear and concise description
of what exactly the concept represents.

4.4 The version attribute

The version attribute determines the version of the concept defini-
tion. Details on versioning of ontology components are specified in sec-
tion 6.

4.5 Versioning and Upgrading

The attributes of the concept tag and their upgrading details are specified
in table 8. Please refer to section 6 for details about ontology upgrad-
ing.

attribute upgradable

name n
description y

display-name-singular y
display-name-plural y

Table 8: Upgrading of concept attributes.

edxml | 37

Object Types

5. Object Types
Every property in an event type definition must specify its object type by
means of the object-type attribute. Object types serve two purposes.
First, the object type determines the value space of valid values for the ob-
jects of the property. Event properties must not contain any objects outside
the value space of its object type. Second, object types determine when two
given objects are to be considered identical. This in turn enables correlating
events that share common objects.

Two given objects, which may or may not be contained in the same edxml
document, are considered identical only when

1. the object types of both objects are either equivalents1 of one another or 1 Equivalence is defined in section 12.2.2

one of the object types is a valid upgrade2 of the other, and 2 What constitutes a valid upgrade is
defined in section 6

2. the values of the objects are identical.

Events produced by different data sources can have shared objects, which
means that the events can be correlated. For this reason object type defini-
tions are often shared between data sources. Defining shared definitions is a
joint effort of edxml data source developers. Object types that are not spe-
cific to a single data source should be shared. The edxml foundation main-
tains a public repository3 for this purpose. 3 See the Github project page at

https://github.com/edxml/bricks

An example of an object definition is shown below:

<object-type name="computing.networking.ipv4"
display -name-singular="IPv4 address"
display -name-plural="IPv4 addresses"
description="internet IPv4 address in dotted

↪→ decimal notation"
data-type="ip"
compress="true"
version="1"/>

The same4 object type may be defined multiple times, either within the 4 Here, the samemeans having identical
values of their name attributessame <ontology> element or in multiple <ontology> elements within the

same edxml document or across multiple documents. Each pair of these
definitions within a single document must be either each others equiva-
lents5 or one must be a valid upgrade6 of the other. 5 Equivalence is defined in section 12.2.1

6 What constitutes a valid upgrade is
defined in section 6.Contents

5.1 The name attribute 39

5.2 The description attribute 39

5.3 The display name attributes 40

5.4 The xref attribute 40

edxml | 38

https://github.com/edxml/bricks

Object Types

5.5 The compress attribute 40

5.6 The regex attributes 40

5.7 The unit attributes 41

5.8 The prefix-radix attribute 41

5.9 The data-type attribute 42

5.10 The fuzzy-matching attribute 49

5.11 Versioning and Upgrading 51

5.12 Data Type Upgrading 52

The various attributes of the <object-type> element are specified
next.

5.1 The name attribute

The name attribute uniquely identifies the object type. It must be composed
of one or more components, separated by dots. The dotted structure is
used to place object type names in a virtual namespace hierarchy. Names-
pacing is intended to reduce the risk of name collisions when merging
edxml documents produced by various parties. In the above example,
we used the name computing.networking.ipv4 to define an ipv4 ad-
dress. The name is constructed from left to right, starting with the very
generic name component ‘computing’. Each subsequent name component
makes the name more specific. The above example could be extended by
introducing other object types that belong in the domain of computer net-
works, choosing names starting like computing.networking. Using this
naming scheme is not required, but recommended. Object types that are
specific to a particular product should have their own object type names-
pace. For example, an object type representing client identifiers in some
crm system from vendor ‘Acme’ might be named ‘acme.crm.client-
id’

5.2 The description attribute

The description attribute should contain a clear and concise description
of the values the object type is intended for.

edxml | 39

Object Types

5.3 The display name attributes

The display-name-singular and display-name-plural attributes
contain the singular and plural forms of the display name of the object
type. The display name provides a human friendly version of the object type
name intended for display in user interfaces, visualizations, reports and so
on.

5.4 The xref attribute

The optional xref attribute can be used to provide an url to an exter-
nal resource providing additional information about the object type. It
might point to a Wikipedia article or a specification document for exam-
ple.

5.5 The compress attribute

The optional compress attribute can be used to indicate that the object
values are expected to have low entropy. Database systems that support
compression can use this attribute to selectively compress objects of specific
object types. When the attribute is not specified then its default value is as-
sumed to be “false”.

5.6 The regex attributes

The optional regex-soft and regex-hard attributes must contain a reg-
ular expression that is valid for use in a pattern facet as defined in the w3c
xml Schema specification1. Both attributes apply only to object types hav- 1 Note that this implies that the expressions

are implicitly anchored.ing a data type from the string family. For object types having other data
types, this attribute must not be set. If the regex-hard attribute is specified
then properties that use the object type must not contain any objects which
do not match the expression.

Contrary to regex-hard the regex-soft attribute must not be used
to validate the objects in edxml events. An edxml event containing ob-
jects that do not match the regex-soft of their object type may still be
a valid event. The intended use cases for the expression in regex-soft
are

• to allow automatic identification of valid object values in external data
sources, or

• to synthesize valid object values

When both regex-hard and a regex-soft are specified it is recom-
mended that the regex-soft is either identical to regex-hard or that it is
an expression that has a value space which is smaller than the value space of
regex-hard.

edxml | 40

Object Types

5.7 The unit attributes

The optional unit-name and unit-symbol attributes can be used
to indicate the name and symbol of the unit of measurement associ-
ated with numerical object types. The attributes must not be set for
object types having data types other than those in the number fam-
ily.

As an example, an object type representing a distance could specify “me-
ters” as unit name and “m” as unit symbol. The International System of
Units should be used whenever possible. The unit name must be specified
in plural form. Metric prefixes like “kilo” / “k” or “milli” / “m” must not be
used. The unit-name and unit-symbol attributes must both be specified
or both omitted from object type definitions. Specifying one without the
other is not allowed.

5.8 The prefix-radix attribute

The optional prefix-radix attribute can be used to indicate the natu-
ral base for metric prefixes of numerical data types. It is intended to be
used in conjunction with the unit-name and unit-symbol attributes to
display the values of objects. As such, it must not be set unless both the
unit-name and unit-symbol attributes are set as well. The attribute can
have any of the values 2, 10 and 60. The meaning of each is specified be-
low:

2 Numeric iec1 prefixes should be used, which represent a multiple of 2. 1 IEC: International Electrotechnical
CommissionThe “ki” prefix represents 210, “mi” represents 220, “gi” represents 230

and so on.

10 Numeric si2 prefixes should be used, which represent a multiple of 10. 2 SI: Système international (d’unités)

The “k” prefix represents 103, “m” represents 106, “g” represents 29 and
so on.

60 Numeric prefixes represent a multiple of 60. The appropriate numerical
prefixes are only defined when combined with specific unit symbols.
When the unit symbol is “s” the values should be denoted as lengths of
time. When the unit symbol is “°” (unicode character U+00B0) the
values should be denoted as angles.

If the unit-name and unit-symbol attributes are set while prefix-
radix is not then the natural base must be assumed to be 10.

5.8.1 The version attribute

The version attribute determines the version of the object type defini-
tion. Details on versioning of ontology components are specified in sec-
tion 6.

edxml | 41

Object Types

5.9 The data-type attribute

The data-type attribute determines the valid value space of the object
type. The data types are subdivided into families. An overview of available
data type families is displayed below.

number Numerical data values (section 5.9.1)

hex Values in hexadecimal notation (section 5.9.2)

geo Geographical coordinates (section 5.9.3)

file References to externally stored data files (section 5.9.5)

uri rfc 3986 uris (section 5.9.4)

uuid Universally unique identifiers (section 5.9.6)

ip Internet Protocol addresses (section 5.9.7)

datetime iso 8601 dates and times (section 5.9.8)

sequence Sequential integer numbers (section 5.9.9)

boolean Boolean values (section 5.9.10)

enum String values from a predefined set (section 5.9.11)

base64 Base64 encoded bytes (section 5.9.12)

string String values (section 5.9.13)

Data types are specified as strings which consist of one or more components
separated by colons (:). The data type family must be the first component.
In case the family is subdivided into members the member must be the
second component. Depending on the data type family and member, the
data type may require additional components to yield a valid data type.
The data type families are specified in more detail in the following sec-
tions.

5.9.1 The number family

The number data type family consists of the following members:

tinyint 8-bit unsigned integer value

smallint 16-bit unsigned integer value

mediumint 24-bit unsigned integer value

int 32-bit unsigned integer value

bigint 64-bit unsigned integer value

float single-precision floating point value

edxml | 42

Object Types

double double-precision floating point value

decimal fixed-point value

currency fixed-point value representing an
amount of money

All integer members1 and the decimal member are unsigned by default. 1 Specifically: number:tinyint, number:
smallint, number:mediumint, number:
int and number:bigint

For each of these data types there is a signed variant which has ‘signed’
as the last component. To illustrate, the number:bigint data type is un-
signed while the corresponding signed data type is number:bigint:
signed.

For objects of the number data type family the following two restrictions
apply:

• Objects must not have any leading ‘+’ sign or leading zeros.
• Zero must be represented without a leading sign.

The above two restrictions do not apply to objects of the two floating point
members.

The value space of the number:float data type is patterned after the lexical
space of the float data type defined by the w3c xml Schema language
recommendation, except that the three special values +inf, -inf and nan are
not included2. 2 The rationale is that support for repre-

senting and processing these values in
programming languages and database
products is generally limited, which leads
to problems handling any data containing
these values.

The value space of the number:double data type is patterned after the lexi-
cal space of the double data type defined by the w3c xml Schema language
recommendation, except that the three special values +inf, -inf and nan are
not included.

The value spaces of both number:float and number:double include
those values which require rounding in order to be encoded into ieee
754 binary encoding. Edxml implementations may apply this round-
ing only to values that require it. Note that this may result in multiple
coexisting physical instances of a single event while each instance con-
tains slightly different floating point object values. This fact is to be
taken into consideration when choosing merge strategies for a given
event type. The decimal member could be a better choice in some
cases.

The decimal member enables exact representation of decimal values as
well as safe serialization and deserialization to and from edxml. The desired
number of digits must be specified by means of the third and fourth compo-
nent in the data type definition, like this:

data-type="number:decimal:7:2"

In the above example the third component specifies the total number of
digits (7) while the fourth component specifies the number of digits be-

edxml | 43

Object Types

hind the decimal point (2). So, in the example, the number can have at
most five digits before and must have two digits after the decimal point.
The length of the values of the decimal data type must match the specified
number of digits after the decimal exactly, padding with zeros if neces-
sary. The total number of decimals must be greater than zero. The total
number of digits must not exceed 381. The signed variant of a decimal 1 This is the number of digits that most

databases support and should fit the needs
for virtually all practical purposes.

number is created by appending :signed, as shown in the example be-
low:

data-type="number:decimal:7:2:signed"

The currency member is used to represent amounts of money. It has
the same value space as the number:decimal:19:4:signed data type.
As such, its value space is in accordance with the Generally Accepted Ac-
counting Principles (gaap). Object types that use this data type should
set their unit-symbol attribute to one of the alpha codes defined by iso
4217.

5.9.2 The hex data types

The hex data type family can be used for representing byte sequences
in hexadecimal notation, with an optional separator character. A hex
data type must consist of at least two components, the second compo-
nent being the length of the value in bytes. An example is shown be-
low:

data-type="hex:6"

The above example describes a hexadecimal number of 6 bytes in length
written as 12 hexadecimal digits. The hex data type may be extended by
adding a digit group size component and a separator component, like
this:

data-type="hex:6:1: -"

The above example describes the same hexadecimal value as before while
also specifying that it must have a separator character (‘-’) after each
digit group, with a group size of one byte (two digits). Using separa-
tors is a common practise to make long numbers more human read-
able, like mac48 hardware addresses and ipv6 addresses. The separa-
tor extension of the hex data type allows to store hexadecimal numbers
in edxml, including separators, without having to use the string data
type. The following edxml event object is valid for the data type defined
above:

<mac>0d-1e-15-ba-dd-06</mac>

A colon can be used as separator, as the following example illustrates:

edxml | 44

Object Types

data-type="hex:6:1::"

The above data type allows objects like the one shown in the following ex-
ample:

<mac>0d:1e:15:ba:dd:06</mac>

Note that the length of the data type, in bytes, must be a multiple of the
group size. The group size, if specified, must greater than zero. Hexadecimal
values must be lowercase and their length must match the length that the
data type specifies, padding with zero digits as needed.

5.9.3 The geo family

The geo data type family is intended for representing wgs841 coordi- 1 TheWorld Geodetic System, 1984 revi-
sion.nates. Currently this family has just one member, which is geo:point.

This data type requires its object values to consist of a latitude value fol-
lowed by a comma and a longitude value. Both the latitude and the lon-
gitude must be decimal numbers having a precision of six digits after the
decimal point2. An example of a valid geo:point object is shown be- 2 This yields a precision of 20 cm at the

equator, well within the limits of wgs84low:

<geolocation>43.133122,115.734600</geolocation>

Latitude values must be between -90.000000 and 90.000000, both in-
clusive. Longitude values must be between -180.000000 exclusive and
180.000000 inclusive. When the latitude value is either -90.000000 or
90.000000 the longitude value must be 0.000000. Both latitude and lon-
gitude must not have any leading zeros or ‘+’ sign. Also, the decimal
parts must have exactly six decimal digits, padded with zeros if neces-
sary3. 3 These requirements guarantee that any

location has only one corresponding
geo:point value.

5.9.4 The uri data types

These data types represent uris as defined in rfc 3986. The second com-
ponent of the data types must be the path separator of the applicable uri
scheme. For example, an url data type could be defined as

data-type="uri:/"

while a urn(Uniform Resource Name) could be defined as

data-type="urn::"

The value space of the data types covers any string. Since each uri schema
defines its own rules for valid uris it is impractical to attempt to define a
value space and validate them. The distinction between the uri data types
and the string data types is mostly semantic.

edxml | 45

Object Types

5.9.5 The file data type

The file data type can be used to refer to externally stored files. The value
space of the data type matches that of the data types in the uri family. The
difference between the uri data types and the file data type is the in-
tended use.

The file data type is intended for partial uris which can be combined
with externally provided configuration data to generate full uris. This al-
lows the referenced files to be relocated without changing the edxml data.
Two parties exchanging edxml data may each store the referenced files
on their own local infrastructure and use local configuration to expand
the file references into uris that resolve correctly in their local environ-
ment.

5.9.6 The uuid data type

This data type represents universally unique identifiers (uuid) as defined in
rfc 4122 of the Internet Engineering Task Force (ietf). The values are low-
ercase canonical textual representations of uuids: 32 hexadecimal digits, in
five groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36
characters.

5.9.7 The ip family

The ip data type family consists of two members. The ip:v4 data type is
used for storing Internet Protocol version 4 (ipv4) addresses while the ip:
v6 data type is used for storing version 6 (ipv6) addresses. Values of the ip:
v4 data type must be written in dotted decimal notation, where each octet
has any leading zeros removed. Example:

192.168.0.1

Values of the ip:v6 data type must be lowercase colon separated hex-
adectets. All eight hexadectets must be specified, address shortening rules
must not be applied. Example:

2001:0db8:0000:0000:0000:ff00:0042:8329

5.9.8 The datetime data type

This data type is used for representing date / time values. The value space is
the range of valid single points in time as defined in iso 8601, with the fol-
lowing edxml specific restrictions:

• Valid years are from 1583 to 9999 (both inclusive)1 1 While iso 8601 allows years before 1583,
implementations of the standard may or
may not support them.

• The time zone must be utc and explicitly specified as ‘Z’

edxml | 46

Object Types

• The time value 24:00:00 is not valid
• Seconds must be specified with a precision of exactly six decimals

These restrictions guarantee compatibility with a wide range of storage
systems and guarantee that every possible value can only be represented in
one way: If the string representation is the same, it must be the same value.
Also, the restrictions imply that date / time values can be correctly sorted
using simple lexicographical string sorting.

5.9.9 The sequence data type

The sequence data type can store unsigned 64-bit integers. As such its
value space matches that of the number:bigint data type. The difference
between the two is in the semantics. The sequence data type is intended
to be used by edxml data sources that generate an incremental sequence
of numbers, with or without gaps. Database record ids that increment each
time a new record is added are a good example. Line numbers in parsed
logging files is another common use case.

Note that this data type can be used to determine the ordering of events, as
detailed in section 2.7.1.

5.9.10 The boolean data type

The boolean data type can be used for boolean values. Its value space is
limited to the string values “true” and “false”.

5.9.11 The enum data types

The enum data types can be used to create a custom value space containing
a fixed set of strings. These strings can be specified in the data type by ap-
pending them as components. For example, the following enum definition
allows three values ‘yes’, ‘no’ and ‘maybe’:

data-type="enum:yes:no:maybe"

5.9.12 The base64 data types

These data types represent Base64 encoded strings. They can be used to
store values that may contain characters which cannot be represented as
valid xml, like some control characters for example. The values of this
data type must be valid base64Binary values as defined in the w3c xml
Schema language recommendation, with the additional restriction that
whitespace is not allowed. An example of a base64 data type definition is
shown below:

edxml | 47

Object Types

data-type="base64:1024"

Themandatory integer component following the family name is the maxi-
mum length of the values, in bytes. A length of zero means that values can
have any length except zero.

The base64 data types are intended for strings that may be displayed as
text, even though some characters may not be printable. Therefore the
data types should only be used for strings that contain mostly printable
characters. Binary data like pictures or arbitrary files should be stored as
event attachments or in externally stored files that are referenced from
events.

5.9.13 The string family

The string data type family can be used for anything that does not suit any
of the other data types mentioned above. An example of a string data type is
shown below:

data-type="string:32:mc:ru"

String data types are composed of the following components:

1. The data type family: ‘string’

2. The maximum length of the object values, 32 in this example. Use ‘0’
(zero) to specify unlimited length

3. Letter case indicator

4. Modifier

The possible values of the letter case indicator and their meanings are listed
below:

• mc: Values may contain any mix of uppercase and lowercase characters.
• lc: Values must contain only lower case characters.
• uc: Values must contain only upper case characters.

The letter case indicator can be used to enforce canonicalization of values
to either pure lower case or pure upper case values. It can be used for object
types that represent values where character case has no meaning, such as
iso 3166-1 country codes for example.

The maximum length can be exploited by some database systems to op-
timize storage and processing. It is recommended to indicate a maximum
length whenever possible.

edxml | 48

Object Types

The modifier component is optional. It may contain any combination of
the characters ‘r’ and ‘u’, in any order. The meaning of these characters is
specified below.

u By default the value space of the string data types is limited to
strings which are encoded using the 8-bit latin1 character
encoding. Presence of the ‘u’ character in the modifier component
widens the value space to strings which are encoded using the
utf-8 character encoding.

r Presence of the ‘r’ character in the modifier component indicates
that it may be advantageous for database systems to store the
values in reverse character order.

As the use of the utf-8 encoding may incur additional overhead for storage
and processing it is recommended to use it only when needed.

Depending on the nature of the strings and expected search patterns that
may be used to search them it may or may not be beneficial to indicate re-
verse character order. As an example consider an object type representing
phone numbers. Phone numbers may or may not include a country or area
code, which makes it more practical to search them using the rightmost
part. Also, the country and area codes in the leftmost part may yield low
cardinality database indexes. Storing these objects in reverse order can im-
prove index efficiency.

5.10 The fuzzy-matching attribute

The optional fuzzy-matching attribute can be used to indicate how to
find objects that are to be considered similar. The attribute must not be
specified for object types that have any data type other than those from
the string family. The available fuzzy matching modes are specified be-
low.

5.10.1 The phonetic matching mode

Phonetic matching indicates that objects should be considered similar when
they sound similar. An object type representing names is a typical example
where phonetic matching can be useful. This matching mode is selected by
setting the fuzzy-matching attribute to “phonetic”.

edxml | 49

Object Types

5.10.2 The head matching mode

This type of fuzzy matching compares the leftmost characters. If they are
identical, the objects should be considered similar. This matching mode is
selected by setting the fuzzy-matching attribute to [n:], where n is the
number of characters that must be identical. Example:

fuzzy-matching="[6:]"/>

5.10.3 The tail maching mode

This type of fuzzy matching compares the rightmost characters. If they are
identical, the objects should be considered similar. This matching mode is
selected by setting the fuzzy-matching attribute to [:n], where n is the
number of characters that must be identical. Example:

fuzzy-matching="[:6]"/>

Note that matching strings on their tail is an expensive operation in many
database systems. These systems can often overcome this problem by stor-
ing the object values in reverse order. For this reason it is recommended to
combine this fuzzy matching mode with the reverse storage indicator in the
data-type attribute1. 1 Refer to section 5.9.13 for details on

reverse string storage.

5.10.4 The substring matching mode

This type of fuzzy matching compares a specific part of the strings. If that
part is identical, the objects should be considered similar. This matching
mode is selected by setting the fuzzy-matching attribute to substring:
followed by a regular expression. The first match found in the string is the
part that is used in the comparison. The regular expression may optionally
contain a parenthesized subexpression. In that case the part that matches
the parenthesized subexpression is used in the comparison rather than the
full match.

To illustrate the use of the substring matching mode we provide an ex-
ample below. The example defines an email address which specifies that
fuzzy matches occur when the local part of the email address is identi-
cal:

<object-type data-type="string:254:mc:u"
name="computing.email.address"
display -name-singular="email address"
display -name-plural="email addresses"
description="RFC 5322 email address"
fuzzy-matching="substring:^[^@]+"/>

Alternatively, one might want to define a fuzzy match when the domain part

edxml | 50

Object Types

of the email address matches. This is accomplished using the following ob-
ject type definition:

<object-type data-type="string:254:mc:u"
name="computing.email.address"
display -name-singular="email address"
display -name-plural="email addresses"
description="RFC 5322 email address"
fuzzy-matching="substring:@(.+)"/>

5.11 Versioning and Upgrading

The attributes of the object-type tag and their upgrading details are
specified in table 9. Please refer to section 6 for details about ontology up-
grading.

attribute upgradable

name n
description y

data-type y∗

display-name-singular y
display-name-plural y

unit-name y
unit-symbol y
prefix-radix y

xref y
compress y
fuzzy-matching y
regex-hard y∗

regex-soft y

Table 9: Upgrading of object type attributes.

Some attributes are upgradable only when certain conditions are met. In
table 9 these are marked with a superscript asterisk (y∗). The conditions are
detailed below.

regex-hard Newer object type versions must not set
this attribute when it was unset in older
versions. Newer object type versions
may change the attribute value of the
previous version by appending an
alternation operator (|) followed by
another regular expression.1 This allows 1 Due to the alternation operator having

the lowest operator precedence the regular
expression engine will try to match the
expression after the alternation operator in
case the part before it does not match.

object type upgrades to extend the value
space of the object type.

data-type Newer object type versions may change
the data-type attribute in order to

edxml | 51

Ontology Versioning and Upgrading

extend the value space of the object
type. Only those changes that are
described in section 5.12 are allowed.

5.12 Data Type Upgrading

The data-type attribute of the <object-type> tag can be upgraded if
and only if that upgrade is specified in the following sections.

5.12.1 Upgrading the enum data type

Newer versions of object types that use the enum data type family may
change their data type relative to the previous version by appending one or
more components to the data-type attribute. For example, the data type
enum:yes:no can be upgraded to enum:yes:no:maybe.

6. Ontology Versioning and Upgrading
Edxml features a distributed ontology. Ontology information may be
distributed across multiple <ontology> elements which we refer to as on-
tology fragments. These fragments may in turn be scattered across multiple
edxml documents. This allows for combining edxml data from multi-
ple data sources that each generate their own domain ontology. Merging
multiple ontology fragments is a common operation in edxml applica-
tions.

Each type of ontology component (object type, concept, source and event
type) has an xml attribute that contains its unique identifier. Two ontology
components of the same type that share a common identifier are defined to
be instances of the same ontology component. The attribute containing the
unique identifier of the ontology component is given for each component
below:

object type name
concept name

event type name
source uri

edxml | 52

Ontology Versioning and Upgrading

When merging two instances of a particular ontology component there are
three possible scenarios:

1. Both instances are equivalent1 1 Equivalence is defined in section 12

2. One is a valid upgrade of the other

3. Neither is a valid upgrade of the other

Two ontology fragments are defined to be mutually compatible when
they do not have any components in common for which the third sce-
nario applies. Only mutually compatible ontology fragments can be
merged.

This section specifies how ontology upgrades work and when two ontol-
ogy components are valid upgrades of each other. While describing the
various ontology components we already specified which aspects of these
components can be upgraded. Upgrades are intended to allow an edxml
data source to refine a previously defined ontology element. To this end all
ontology components have a numerical version attribute which defines
their versions. Consider two instances of the same ontology component,
A and B. Now B is defined to be an upgrade ofA when the version of B
is greater than the version ofA. This upgrade can be either valid or in-
valid.

An upgrade of an ontology component is valid only then the new ver-
sion introduces no changes other than those that are allowed in up-
grades of that specific type of component.2 The allowed changes for 2 Note that an upgrade that introduces no

changes other than changing the version is
also a valid upgrade.

the various ontology components are detailed in their respective sec-
tions:

Event types Section 2.8 on page 32

Sources Section 3.4 on page 35

Concepts Section 4.5 on page 37

Object types Section 5.11 on page 51

The allowed changes for ontology components are designed such that up-
grades are always backward compatible: Any event that is valid for version
v of its event type must also be valid for any version v′ of that same event
type when v′ ≥ v. For example, given any event E that is valid for ver-
sion 1 of its event type Te then E must also be valid for versions 2, 3, … of
Te.

Backward compatibility also holds for the semantics of events. An ontology
upgrade should not change the meaning of the events as defined by previ-
ous versions of the event type. As such, ontology upgrades are intended to
be used to correct errors in ontologies and extend them. For example, an

edxml | 53

Foreign Elements and Attributes

upgrade might fix a spelling error in an event type description or add an
optional property.

Note that an edxml ontology as a whole has no version, only its compo-
nents do. This is a result of the ontology being distributed in nature. Each
edxml data source only needs to output the event type definitions that are
relevant to the data that it produces. And each data source can indepen-
dently output upgrades of those event types without any coordination tak-
ing place with other data sources.

7. Foreign Elements and Attributes
Third parties may define proprietary extensions of the edxml specification
by introducing custom xml elements and attributes. We will refer to these
as foreign elements and attributes. The foreign elements and attributes are
intended to be used by client / server combinations that both agree to sup-
port a particular proprietary extension of the edxml specification. As these
extensions are valid edxml, implementations of the edxml specification
must accept the extensions as valid edxml. However, edxml implementa-
tions may ignore foreign elements and attributes and drop them on inges-
tion. The relaxng schema allows for extensions at specific extension points
which are specified below.

7.1 Foreign event attributes

The <event> tag accepts foreign attributes provided that the attributes have
a namespace that differs from the edxml namespace. This implies that the
attributes must have a namespace prefix.

7.2 Foreign elements

The root <edxml> element accepts arbitrary child elements provided that
the elements have a namespace that differs from the edxml namespace.
Contrary to <event> elements foreign elements may precede the first
<ontology> element in an edxml document.

edxml | 54

Event Hashes

8. Event Hashes
Each logical edxml event has a unique persistent hash. This hash is not
explicitly stored in the event itself. It can be computed from the event
data using the procedure described in section 8.1. The hash includes a
subset of the properties of an event. The properties in this subset are re-
ferred to as hashed properties. Hashed properties are defined as proper-
ties that have the match merge strategy. Depending on how the hashed
properties are chosen multiple physical events may share a common
hash. A set of physical events that have identical hash values represent
a single logical event. As such the hashed properties determine what
uniquely identifies a logical event. It also implies that the hash of a log-
ical event is persistent. Edxml event types can be designed to allow
events to be updated by producing a new physical event that has the same
hash as an existing event. The hash ‘sticks’ to the event as it evolves over
time. For this reason, edxml event hashes are also referred to as sticky
hashes.

8.1 Hash computation method

Sticky hashes are computed from the following three hash components:

1. The uri of the event source

2. The name of the event type

3. A subset of the event objects

Each hash component is a string. The string representation of the third
component, the event objects, is specified later in this section.

To compute the sticky hash, the above three hash components must be
concatenated using a linefeed character (\n) as separator between the
components, in the given order. Then, the resulting string must be hashed
using a hashing function. Sticky hashes which appear in edxml docu-
ments for a specific intent that is described elsewhere in this specification
must be computed and represented as specified for that specific intent.
For all other uses of sticky hashes any hashing function and hash repre-
sentation may be used as long as the hashes are sufficiently unique for the
purpose.

The subset of event objects that is the input for the third hash compo-
nent is selected by taking the objects of all hashed properties of the event.
The string representation of the third hash component is obtained from the
event object subset by means of the following steps:

edxml | 55

Event Hashes

1. Each event object is prepended with the name of its property and a colon
(:).

2. Any duplicates among the prepended objects are removed, resulting in a
set of unique strings.

3. The strings in the set are sorted using a binary sort.

4. The sorted set of strings is concatenated using the four byte sequence
0xffffffff1 as separator. 1 This byte sequence cannot occur in any

valid unicode string, which means that it is
unambiguous as a separator in this context.

8.2 Example

Consider the following event representing a response from a DNS query
service:

<event event-type="internet.dns.record.a"
source-uri="/internet/dns/">

<properties>
<ip>173.194.67.104</ip>
<ip>173.194.67.103</ip>
<ip>173.194.67.106</ip>
<ip>173.194.67.147</ip>
<ip>173.194.67.105</ip>
<ip>173.194.67.99</ip>
<domain>www.google.com</domain>
<queried>2012-03-11T00:00:21Z</queried>

</properties>
</event>

Now assume that properties domain and ip are the hashed properties of the
associated event type. This implies that there are seven objects involved in
the sticky hash calculation. After prepending the property names, we get the
following object substrings:

ip:173.194.67.104
ip:173.194.67.103
ip:173.194.67.106
ip:173.194.67.147
ip:173.194.67.105
ip:173.194.67.99
domain:www.google.com

Next, we sort the substrings and remove any duplicates:

domain:www.google.com
ip:173.194.67.103
ip:173.194.67.104
ip:173.194.67.105
ip:173.194.67.106
ip:173.194.67.147
ip:173.194.67.99

Concatenating the event object substrings and combining all three hash
components we obtain the following input string for the hashing func-
tion:

edxml | 56

Resolving Event Collisions

/internet/dns/\n
internet.dns.record.a\n
ip:173.194.67.103\xff\xff\xff\xff
ip:173.194.67.104\xff\xff\xff\xff
ip:173.194.67.105\xff\xff\xff\xff
ip:173.194.67.106\xff\xff\xff\xff
ip:173.194.67.147\xff\xff\xff\xff
ip:173.194.67.99\xff\xff\xff\xff
domain:www.google.com

In the above string, only the literal \n are linefeed characters and the \xff
represent the bytes of the four byte object value separators.

9. Resolving Event Collisions
A given set of edxml documents may contain multiple physical events
that represent instances of one and the same logical event. Two physical
events represent a single logical event when they share the same sticky
hash1. When this occurs the two events are said to collide. This enables 1 See section 8 for details about sticky

hashes.edxml data sources to generate updates for a previously output event.
An edxml data consumer may want to resolve collisions and merge the
events. The following sections specify how that operation must be per-
formed.

9.1 Merging event objects

For each of the properties of the event type, the event objects of the collid-
ing events are combined and merged. The merge attribute2 of the event 2 The merge attribute is specified in

section 2.2.8.property indicates the merge strategy that must be used to merge the ob-
jects of that property in the colliding events. The merge strategy takes the
combined objects of all colliding events as input and determines the output
object(s) that will be in the merged event. For each of the possible values
of the merge attribute the merge strategy that must be applied is specified
below.

min Output the object with the smallest value.

max Output the object with the largest value.

add Output all objects after discarding any duplicates. The intent is
to allow adding more objects to a previously generated event.

replace Output the objects from the last3 colliding event. If the last 3 Here ‘last’ is the last event when the
colliding events are ordered by their version
(see section 2.7.2)

event has no object for the property, no objects are output.

match Output all objects after discarding any duplicates4. The intent is 4 Note that, since the property is a hashed
property by definition, the objects of all
colliding events are identical.

to match events on this property.

edxml | 57

Resolving Event Collisions

set Output all objects after discarding any duplicates. The strategy
indicates the intent to have an immutable event property that
may initially be empty and allow populating it once, later.
Therefore the object sets of the property of the colliding events
should be either empty or contain identical set of objects.
Unless the event type is versioned1 edxml implementations are 1 Conflict detection requires checking all

event properties regardless of their merge
strategy. See section 9.4

not required to check if non-empty object sets are actually
identical.

any Output all objects after discarding any duplicates. The strategy
indicates the intent to have an immutable event property. The
object sets of the property should be identical for all colliding
events. Unless the event type is versioned edxml
implementations are not required to check if this is actually the
case.

9.2 Merging explicit parents

Any explicit parent hashes from the parents attributes of the colliding
events must be combined into the parents attribute of the merged event,
discarding any duplicates.

9.3 Merging event attachments

The attachments of colliding events should be identical and event merging
code may safely assume that they are. As such, merge operations can pick
the attachments from any of the colliding events.

9.4 Event merge conflicts

An event merge conflict is defined as the situation that occurs when merg-
ing colliding physical events that have the same event version while having
differing sets of objects for at least one of its properties.

This situation may occur when multiple systems share state while each of
them can independently output state updates. Representing this state using
a versioned event type introduces the possibility of conflicts. These conflicts
can prevent conflicting information from going unnoticed.

Colliding events of versioned event types must be checked for merge con-
flicts while merging. Merge conflicts generally cannot be resolved automati-
cally.

edxml | 58

Concepts in EDXML

10. Concepts in EDXML
This section is non-normative.

This specification defines several xml elements and attributes related to
edxml concepts. This section clarifies what concepts are and how these
elements and attributes interact with concepts. For full background about
the idea of concepts and concept mining please refer to the website1 of the 1 www.edxml.org

edxml foundation.

Event types provide context for event objects, defining how these objects
are related. Edxml concepts can be understood as alternative contexts
for event objects. The fundamental difference is that event types have
actual instances in edxml documents (the events) while concepts do
not. Concepts can be instantiated as products of a process called concept
mining, which is a form of data analysis taking edxml events as input.
Another difference is that events have properties while concepts have at-
tributes.

Multiple event types may contribute attributes to a particular concept by
means of the <property-concept>2 elements in their property defi- 2 Property / concept associations are

specified in section 2.2.10.nitions. These elements can be seen as a mapping for transferring objects
from an event context into a concept instance context.

The principal problem that a concept mining algorithm needs to solve
is determining which event objects to transfer into which concept in-
stances. When multiple properties of a given event type refer to the same
concept, these do not necessarily belong to the same concept instance.
For example, an event type may contain two properties that contain
an ipv4 address while both properties are associated with a ‘computer’
concept. These properties may refer to one and the same computer or
to two different computers. In order to enable machines to make this
distinction edxml provides the inter-concept3 and intra-concept4 rela- 3 The inter-concept relation is specified in

section 2.3.8.
4 The intra-concept relation is specified in
section 2.3.7.

tions.

Both types of concept relations relate the objects of two properties within
a single event to concept instances. However, the attributes of a concept in-
stance may also be found scattered across multiple events that jointly contain
information about a single concept instance. Correlating events that refer
to the same concept instance can be done by identifying objects shared
between events. Consider two events containing the same ipv4 address and
assume that the properties of both event types associate those objects with
the same concept. Then, these events may either refer to the same com-
puter or they may refer to two different computers that happen to have the
same ipv4 address. In order to enable machines to make this distinction
they need to know if an ipv4 address is a unique identifier of a computer or
not. This is where the confidence attribute of the <property-concept>
element comes in. This confidence is not a binary yes / no value, it is a con-
fidence indicating how strong of an identifier the property is for instances of
the concept.

edxml | 59

www.edxml.org

Edxml Templates

Instantiating a concept can be implemented as an iterative process of asso-
ciating one edxml object with another. Taking one object within a specific
event as a starting point (‘seed’) and following concept relations leads to
more objects. These objects in turn lead to more events that have this object
in common, and so on. Each step has an intrinsic risk of error. The errors
originate from the various confidence attributes that exist in edxml, as
outlined below.

• Properties have confidences implying that objects may be inaccurate.
• Relations have confidences implying that following them may lead to the
wrong objects.

• Property / concept associations have confidences implying that a
property may be a weak concept identifier, resulting in incorrectly
correlated events.

These confidences enable event type designers to integrate uncertainty as it
exists in various aspects of data and enable machines to reflect that uncer-
tainty in analysis results.

11. Edxml Templates
Edxml templates are used in various contexts to transform event infor-
mation into text phrases. The most prominent use case for templates can
be found in the story attribute of an event type definition. This template
transforms the data of an event into a little story. While edxml ontol-
ogy information is primarily intended for consumption by machines,
edxml templates are specifically intended for human consumption.
From an event type designer perspective it enables the designer to con-
vey all of the intricacies of interpretation of the various event properties
and how they relate to one another. From an end user perspective it en-
ables the end user to learn the exact meaning of an event in an intuitive
way.

11.1 Template syntax

Edxml templates utilize the concept of data binding: They contain place-
holders which refer the properties and attachments of the event type for
which they are defined. When an edxml template is evaluated into a string
the placeholders must be replaced with strings that depend on the objects
and attachment content from a specific event.

Consider the following template:

phone call from [[caller]] to [[callee]]

edxml | 60

Edxml Templates

The strings wrapped in double square brackets (blue) are placeholders.
The strings between the brackets are property names. In this example, the
placeholders must be replaced with the objects of the caller and callee
properties. When evaluated, the template might yield the following output
string:

phone call from 0034656286219 to 0034642772906

Since event properties may be optional the placeholders can refer to prop-
erties which may not have any objects. This may vary from one event
to another. Since all events of a specific event type share the same tem-
plate, this one template needs to evaluate into a proper text phrase for
any valid event of that event type. This is achieved by creating template
scopes.

When any of the placeholders in the template evaluates into an empty
string, the full template must evaluate into an empty string. When this
happens, we say that the template has collapsed. In practise many tem-
plates will refer to optional event properties, which means that the tem-
plate will yield an empty string for some of the events. To counter this
effect the collapse of the template can be contained within a part of
the template by using template scopes. A template scope is a part of
the template that is enclosed in a pair of curly brackets, as shown be-
low1: 1 We use the ↪→ symbol to indicate line

breaks in long templates. These are not part
of the actual template string.

A phone call to [[callee]] was registered{, originating from [[
↪→ caller]]}.

The curly brackets shown above (in green) define a template scope that will
limit a collapse of the template to the scope enclosed in the brackets. If, in
the above example, the caller property has no objects then only the scope
that contains the caller property will collapse and the template still evalu-
ates into a proper text phrase. Template scopes enable designing templates
which yield strings that gracefully degrade when evaluated for events that
lack objects for some of its properties.

In a slightly more advanced example, two scopes are used for events that
contain objects for either of two event properties, but never both:

The web site can be reached by means of {IP address [[ip]]}{
↪→ host name [[host-name]]}.

Template scopes may also be nested. The below example illustrates how this
might be useful:

Client record of client number [[client -recordno]].{ The record
↪→ contains the following additional information:{{ Date
↪→ of birth is [[date-of-birth]].}{ Client has an order
↪→ history of [[order -count]] orders.}}}

edxml | 61

Edxml Templates

This example will produce a useful output string even when only a client
number is available and all other information is missing.

Edxml templates may be further enhanced by employing object format-
ters. Object formatters are used to change how event objects translate into
strings. Consider the following example:

On [[date_time:timestamp ,minute]], a phone call took place from
↪→ [[caller]] to [[callee]].

In the example the timestamp property contains iso 8601 timestamps,
which do not look natural to humans. The date_time string is a format-
ter which transforms iso 8601 timestamps into more human friendly
dates and times. A formatter must be followed by a colon. The string
after the colon must be a comma separated list of formatter parame-
ters. In the case of a date_time formatter the first parameter is a prop-
erty name, the second parameter indicates the display accuracy of the
timestamp. Without the formatter, the above template might evaluate
to:

On 2010-09-17T15:14:50.000000Z, a phone call took place from
+316385529 to +31699265109.

Using the formatter, the output might look more like this:

On Friday, September 17th 2010 at 15:14h,
a phone call took place from +316385529 to +31699265109.

Formatters can also be used to control scoped template collapse. Consider a
template containing the following phrase:

... The shipment is located in [[city]] [[country]].

Now assume that both properties mentioned in the template are optional,
which means they might not have any objects. We could use curly brackets
to limit the scope of the template collapse:

...{ The shipment is located in [[city]] [[country]]}.

Unfortunately this has the undesired effect of collapsing the entire phrase
when one property has no objects while the other does. Now consider the
following alternative approach:

... The shipment is located in {[[city]]} {[[country]]}.

Now, when both properties are empty the phrase evaluates into a malformed
string:

The shipment is located in .

edxml | 62

Edxml Templates

In situations like this the unless_empty formatter can be used. It evaluates
into a string constant unless all of the specified event properties are empty.
Consider:

...{ The shipment is located [[unless_empty:city,country ,in]] {
↪→ [[city]]} {[[country]]}.}

With this formatter in place and both properties empty, the formatter will
yield an empty string causing the scope that contains it to collapse. When
any of the two properties has an object the formatter will yield “in” and tem-
plate collapse is prevented.

11.2 Template formatters

A small variety of formatters is available for use in edxml templates. Each
will be described in the following sections. Note that these sections pur-
posely do not always specify every single detail of how the formatters should
be implemented. For that reason the evaluation results shown in the ex-
amples are not normative. Evaluated templates may vary slightly between
different implementations of the specification and between various target
output mediums.

Contents

11.2.1 The date_time formatter 64

11.2.2 The duration formatter 64

11.2.3 The time_span formatter 65

11.2.4 The url formatter 65

11.2.5 Themerge formatter 65

11.2.6 The boolean_string_choice formatter . . . 66

11.2.7 The boolean_on_off formatter 66

11.2.8 The boolean_is_is_not formatter 66

11.2.9 The empty formatter 67

11.2.10 The unless_empty formatter 67

11.2.11 The attachment formatter 67

edxml | 63

Edxml Templates

11.2.1 The date_time formatter

The date_time formatter generates a string representing the date and
time of an object having the datetime data type. It has two parameters.
The first parameter is the property name. The second parameter indi-
cates the display accuracy of the value. It accepts one of the following
values:

year Show year

month Show year and month

date Show year, month and day (date)

hour Show year, month, day and hour

minute Show year, month, day, hour and minute

second Show year, month, day, hour, minute
and second

millisecond Show year, month, day, hour, minute,
second with millisecond precision

microsecond Show year, month, day, hour, minute,
second with microsecond precision

Example:

It happened in [[date_time:date,month]].

which might evaluate into:

It happened in March 2015.

11.2.2 The duration formatter

The duration formatter computes a duration from two objects having the
datetime data type. It takes two property names as parameters. Exam-
ple:

It took [[duration:begin ,end]].

which might evaluate into:

It took 6 hours, 3 minutes and 34 seconds.

edxml | 64

Edxml Templates

11.2.3 The time_span formatter

The time_span formatter translates two timestamps into a description
of the time period in between these two timestamps. It takes two property
names are parameters. Example:

It happened [[time_span:begin ,end]].

which might evaluate into:

It happened on January 12th 2017 between 13:43h and 16:31h.

11.2.4 The url formatter

The url formatter renders objects as a hyperlinks, if the target output
medium supports this1. It features two parameters. The first is the name of 1 An edxml template evaluator outputting

to html for instance could support this.an event property that contains the urls. The second parameter is a string
containing a name for the url, which is intended for generating clickable
hyperlinks that display the name of the url rather than the url itself. Ex-
ample:

More information can be found [[url:external -ref,on this
↪→ website]].

An evaluator targeting an html output medium might evaluate this
into:

<p>More information can be found on
↪→ this site.</p>

A renderer targeting a plain text output medium in stead might evaluate this
into:

More information can be found on this site (http://some.web.site).

11.2.5 Themerge formatter

The merge formatter merges the objects from one or more properties into a
single list of objects. The formatter takes any number of property names as
arguments. Example:

The order consists of [[merge:books ,magazines]].

which might evaluate into:

The order consists of The Da Vinci Code and National Geographic.

edxml | 65

Edxml Templates

11.2.6 The boolean_string_choice formatter

The boolean_string_choice formatter yields one out of a pair of two
strings, depending on the value of an object having the boolean data
type. It requires three parameters. The first parameter is the name of an
event property. The second parameter is a string which is rendered for ob-
ject value true. The third parameter is a string which is rendered for object
value false. Example:

The server has a [[boolean_string_choice:host.ip.is-public ,
↪→ public ,private]] IP address.

which might evaluate into:

The server has a public IP address.

11.2.7 The boolean_on_off formatter

The boolean_on_off formatter yields either “on” or “off”, depending on
the value of an object having the boolean data type. It requires the name
of a property containing boolean objects as its only parameter. Exam-
ple:

The alarm was switched [[boolean_on_off:alarm -status]].

which might evaluate into:

The alarm was switched off.

11.2.8 The boolean_is_is_not formatter

The boolean_is_is_not formatter yields either “is” or “is not”, depend-
ing on the value of an object having the boolean data type. It requires the
name of a property containing boolean objects as its only parameter. Exam-
ple:

The alarm [[boolean_is_is_not:alarm -status]] activated.

which might evaluate into:

The alarm is activated.

edxml | 66

Edxml Templates

11.2.9 The empty formatter

The empty formatter yields a fixed string in case a property has no objects,
while producing an empty string in all other cases. It requires the name of
an event property as its only parameter. Example:

The file{, which has a file type of [[file.type]],}{, [[empty:
↪→ file.type,of which no file type is known]],} was
↪→ received on [[date_time:timestamp ,seconds]].

Depending on the presence / absence of objects the above template might
evaluate into:

The file, which has a file type of application/pdf,
was received on March 3rd 2008 at 23:54:12h.

or

The file, of which no file type is known,
was received on March 3rd 2008 at 23:54:12h.

11.2.10 The unless_empty formatter

The unless_empty formatter yields a fixed string unless none of the speci-
fied properties have any objects. It requires the names of one or more event
properties as parameters, followed by a final parameter containing the fixed
string. Example:

The shipment is ready{ and is located [[unless_empty:city,
↪→ country ,in]] {[[city]]} {[[country]]}}.

When a country object is available but no city object this template might
evaluate into:

The shipment is ready and is located in the Netherlands.

When no country object and no city object is available this template will
evaluate into:

The shipment is ready.

11.2.11 The attachment formatter

The attachment formatter renders an event attachment into the output
string rather than event objects. Its only parameter is the name of an at-
tachment that is defined for the event type. As attachments are typically

edxml | 67

Equivalence

used to store relatively long string or binary values, edxml implemen-
tations may or may not render them in line. Depending on the attach-
ment media type, output medium and other factors they may also be
rendered as a separate paragraph, as an image, or in some other form.
For this reason it is recommended to position any place holders con-
taining this formatter at the end of a sentence. An example is shown be-
low.

The message text is: "[[attachment:message]]"

Above template might evaluate into:

The message text is:
“Hello World”

12. Equivalence
This specification uses the notion of equivalence in various places. In this
section we define equivalence for edxml events, ontology components and
edxml documents.

Consider two edxml documentsA and B. These documents are de-
fined as each others equivalents when the following two conditions are
met:

• Each logical event inAmust have an equivalent event in B, and the
other way around.

• The combination of all <ontology> elements fromAmust be the
equivalent of the combination of all <ontology> elements from B, and
the other way around.

Note that the logical events can be obtained from an edxml document by
merging any colliding physical events as specified in section 9.

12.1 Event Equivalence

To define the meaning of equivalence of two edxml events it is useful to de-
fine the normal form of an edxml event first:

edxml | 68

Equivalence

Normal form of an edxml event
An <event> element in Canonical xml1 form representing a valid 1 Canonical xml Version 2, as specified by

the w3cedxml event where any missing optional attributes are set to their
defaults and which has its objects and attachments sorted as follows:

• The objects must be sorted on property name, then on the value string.
• The attachments must be sorted on attachment name, then on their id
attribute value.

The hashes in the parents attribute of the <event> tag must be sorted
lexicographically.

Two edxml events are defined to be each others equivalents when their nor-
mal forms are identical.

12.2 Ontology Equivalence

Given two edxml ontologiesA and B we defineA and B to be each oth-
ers equivalents when each of the object types, concepts, event types and
sources inA has an equivalent definition in B and the other way around.
We define equivalence for object types, concepts, event types and sources
below.

12.2.1 Object Type Equivalence

To define the meaning of equivalence of two object type definitions it is use-
ful to define the normal form of a object type definition first:

Normal form of an object type definition
An <object-type> element in Canonical xml2 form representing a 2 As specified by the w3c

valid object type where any missing optional attributes are set to their
defaults.

Two object type definitions are defined to be each others equivalents when
their normal forms are identical.

12.2.2 Concept Equivalence

To define the meaning of equivalence of two concept definitions it is useful
to define the normal form of a concept definition first:

Normal form of a concept definition
A <concept> element in Canonical xml3 form representing a valid 3 As specified by the w3c

concept where any missing optional attributes are set to their defaults.

Two concept definitions are defined to be each others equivalents when
their normal forms are identical.

edxml | 69

Equivalence

12.2.3 Source Equivalence

To define the meaning of equivalence of two source definitions it is useful to
define the normal form of a source definition first:

Normal form of a source definition
A <source> element in Canonical xml1 form representing a valid source 1 As specified by the w3c

where any missing optional attributes are set to their defaults.

Two source definitions are defined to be each others equivalents when their
normal forms are identical.

12.2.4 Event Type Equivalence

To define the meaning of equivalence of two event type definitions it is use-
ful to define the normal form of an event type definition first:

Normal form of an event type definition
An <event-type> element in Canonical xml2 form representing a valid 2 As specified by the w3c

event type where:

• any missing optional attributes are set to their defaults,
• its properties, relations and attachments are sorted,

– the properties and attachments by their names,
– the relations by their type, then by their source attribute and

finally by their target attribute,
• the property mappings listed in the property-map attribute of the

<parent> element, if present, are sorted.

Two event type definitions are defined to be each others equivalents when
their normal forms are identical.

edxml | 70

Tag and Attribute Reference

13. Tag and Attribute Reference
This section offers a quick reference to all xml tags and attributes defined
by the edxml specification. For each tag, it lists their parent tag and at-
tributes.

Tag Parent Attribute Description
edxml Root tag

version Edxml version
ontology edxml Contains ontology fragment
event-types ontology Contains event type definitions
event-type event-types Event type definition

name Name of event type
display-name-singular Display name (singular form)
display-name-plural Display name (plural form)
description Description
summary Short event description template
story Full event description template
timespan-start Time span start property
timespan-end Time span end property
sequence Logical event sequence number
event-version Event version
version Event type version

parent event-type Parent definition
event-type Event type of parent
property-map Child / parent mapping
parent-description Child / parent relation description
siblings-description Child / sibling relation description

properties event-type Event type properties element
property properties Property definition

name Name
description Description
object-type Associated object type
similar Event similarity hint
confidence Object confidence
merge Merge strategy
optional Optional property flag
multivalued Multivalued property flag

relations event-type Property relations element
intra relations Intra-concept relation definition

source Property name (source)
target Property name (target)
source-concept Concept name (source)
target-concept Concept name (target)
description Description of relation
predicate Relation predicate
confidence Relation confidence

inter relations Inter-concept relation definition
source Property name (source)

edxml | 71

Tag and Attribute Reference

Tag Parent Attribute Description
target Property name. (target)
source-concept Concept name (source)
target-concept Concept name. (target)
description Description of relation
predicate Relation predicate
confidence Relation confidence

name relations Name relation definition
source Property name (source)
target Property name. (target)

description relations Description relation definition
source Property name (source)
target Property name. (target)

container relations Container relation definition
source Property name (source)
target Property name. (target)

original relations Original relation definition
source Property name (source)
target Property name. (target)

other relations Generic relation definition
source Property name (source)
target Property name (target)
description Description of relation
predicate Relation predicate
confidence Relation confidence

property-concept property Property / concept association
name Concept name (target)
confidence Concept identifier confidence
cnp Concept naming priority
attr-extension Attribute name extension
attr-display-name-singular Attribute display name (singular

form)
attr-display-name-plural Attribute display name (plural

form)
attachments event-type Event attachment definitions
attachment attachments Event attachment definition

name Name of the attachment
description Description of the attachment
display-name-singular Display name of the attachment

(singular form)
display-name-plural Display name of the attachment

(plural form)
media-type rfc 6838 media type of the attach-

ment
encoding Encoding of the attachment

object-types ontology Contains object types
object-type object-types Object type definition

name Name of object type

edxml | 72

Tag and Attribute Reference

Tag Parent Attribute Description
display-name-singular Display name of object type (singu-

lar form)
display-name-plural Display name of object type (plural

form)
description Description of object type
data-type An edxml data type
unit-name Unit of measurement (name)
unit-symbol Unit of measurement (symbol)
prefix-radix Radix of metric prefixes
xref Reference to additional details
compress Compression hint
regex-hard Regular expression (hard)
regex-soft Regular expression (soft)
fuzzy-matching Fuzzy comparison option
version Version

concepts ontology Contains concept definitions
concept concepts Contains concept definition

name Concept name
display-name-singular Display name of concept (singular

form)
display-name-plural Display name of concept (plural

form)
description Description of concept
version Version

sources ontology Contains sources
source sources Source definition

uri Source uri
description Description of source
date-acquired Acquisition date in yyyymmdd

format
version Version

event edxml Event
event-type Name of event type
source-uri Source uri
parents List of parent hashes

properties event Event properties
attachments event Event attachments

id Event attachment identifier

edxml | 73

	Introduction
	Event Types
	Event Sources
	Concepts
	Object Types
	Ontology Versioning and Upgrading
	Foreign Elements and Attributes
	Event Hashes
	Resolving Event Collisions
	Concepts in EDXML
	Edxml Templates
	Equivalence
	Tag and Attribute Reference

